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Abstract – In chaotic deterministic systems, seemingly stochastic behavior is generated by rel-
atively simple, though hidden, organizing rules and structures. Prominent among the tools used
to characterize this complexity in 1D and 2D systems are techniques which exploit the topol-
ogy of dynamically invariant structures. However, the path to extending many such topological
techniques to three dimensions is filled with roadblocks that prevent their application to a wider
variety of physical systems. Here, we overcome these roadblocks and successfully analyze a real-
istic model of 3D fluid advection, by extending the homotopic lobe dynamics (HLD) technique,
previously developed for 2D area-preserving dynamics, to 3D volume-preserving dynamics. We
start with numerically-generated finite-time chaotic-scattering data for particles entrained in a
spherical fluid vortex, and use this data to build a symbolic representation of the dynamics. We
then use this symbolic representation to explain and predict the self-similar fractal structure of
the scattering data, to compute bounds on the topological entropy, a fundamental measure of
mixing, and to discover two different mixing mechanisms, which stretch 2D material surfaces and
1D material curves in distinct ways.

Introduction. – The essential allure of chaotic dy-
namics is confronting a complex, seemingly random, phys-
ical process and discovering the hidden, underlying pat-
terns that order it. This is typified by the seminal exper-
iments of Gollub and Swinney, showing that the progres-
sion from regular to turbulent fluid flow occurs via the
predictable period doubling cascade. [1] Immense success
has been achieved in unraveling such patterns for chaotic
systems reducible to maps on a one- or two-dimensional
phase space [2–11]. A key theme in such studies is topolog-
ical forcing: the existence of certain short-time structures
(e.g. low-period orbits) forces the existence of infinitely
many longer-time structures. The resulting patterns are
typically fractal, with symbolic rules describing a rich self-
similarity. Thus, early-time, low-resolution data predicts
long-time, high-resolution patterns. This is nicely illus-
trated by the famous period-three-implies-chaos result:
the existence of a single period-three orbit of a map on the
unit interval guarantees the existence of periodic orbits of
arbitrary period [2, 3]. A central challenge in dynamical
systems then is to extend these topological techniques to
higher dimensions, for which there are few clear paths for-
ward [12–16].

In this paper, we demonstrate for the first time how
chaotic scattering data for an explicit three-dimensional
system, a numerical model of a chaotic time-periodic fluid
vortex, reveals fractal rules of the dynamics. Our results
follow from a deep topological understanding of special
2D surfaces within the fluid; the stable and unstable man-
ifolds [17] attached to stagnation points. These manifolds
intersect an infinite number of times in a beautiful fractal
pattern called a heteroclinic tangle (Fig. 1a). We have
developed a technique to extract the topology of the tan-
gle in 3D from scattering data and turn it into a symbolic
representation of the dynamics. We build on the under-
standing of heteroclinic tangles in 2D [6, 18–24], namely
the homotopic lobe dynamics (HLD) technique [25–31]. A
recent study [32] showed how to extend HLD to 3D for
a few “tailor-made” tangles, absent any explicit dynam-
ics. The key advances here are to demonstrate that this
algorithm can be applied to a physically representative
dynamical system that exists “in the wild” - passive ad-
vection in a modified Hill’s spherical vortex, and to show
that the resultant symbolic dynamics can be used to iden-
tify distinct stretching mechanisms and predict intricate
fractal patterns in the scattering data.
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Fig. 1: Hill’s Vortex and Scattering Data. a, 3D cut-away view of the modified Hill’s vortex. b, Cross-sectional view of
Hill’s spherical vortex with streamlines. c, Numerically computed forward ETP. d, Cartoon of the forward ETP, with labeled
intersection curves and dots indicating tangencies between WU and WS . This image can be constructed by cutting along the
dotted line in c and folding all the topological information up, like a fan, into the rectangular region. e, Similar cartoon of the
backward ETP. Reversibility guarantees that the forward and backward ETPs have the same pattern.

Chaotic spherical vortex. – Hill’s vortex [33,34] is
a well known solution to Euler’s equations for an inviscid
incompressible fluid, with stream-function

ψ (r, θ) =


1
2U
(

1− a3

r3

)
r2 sin2 θ, (r > a) ,

− 3
4U
(

1− r2

a2

)
r2 sin2 θ, (r < a) ,

(1)

where (r, θ) are the radius and azimuthal angle. The vor-
tex radius is a = 1, and the flow speed takes the uniform
value U = −1.2573 far from the vortex. The velocity
field in cylindrical coordinates is ρ̇ = −ρ−1∂ψ/∂z and
ż = ρ−1∂ψ/∂ρ. This flow has two unstable stagnation
points (fixed points), zu and z`, connected by a 2D spher-
ical separatrix, separating the vortex interior from its ex-
terior (Fig. 1b). The separatrix prevents mixing between
fluid inside and outside the vortex. To induce mixing, we
modify Hill’s vortex by a sequence of time-periodic adjust-
ments to the flow. We first create a map, H, by integrating
an initial point (x, y, z) over the time interval [0, 1], using
the velocity field derived from Eq. (1). Next we compose
H with a series of maps, each used to break a particu-
lar symmetry. To break the separatrix, we use the map,
Lz (x, y, z) =

(
x, y, z + ε

(
x2 + y2

))
, with ε = 0.75. To

break the z-rotational symmetry, we apply a y-rotation,
Ry (θ), with position-dependent rotation angle, θ (r) =
2πδy (a− r) /

(
1 + r2

)
, where δy = 0.3. Finally, we use

a z-rotation, Rz (θ), with θ (r) = 2πδz (a− r) /
(
1 + r2

)
,

where δz = 0.2. We then define the advection map as
M ≡ R−1

z ◦ Ry ◦ Lz ◦H ◦ Lz ◦ Ry ◦ Rz. The resulting M
is volume-preserving with fixed points zu = (0, 0, 1) and
z` = (0, 0,−1). It also satisfies M−1 = S ◦M ◦ S, where
S (x, y, z) = (x, y,−z), i.e. reversing time is equivalent to
reflecting about the xy-plane.

The advection map can be interpreted as evolving an
initial point (x, y, z) forward one period under a time-

periodic flow. The separatrix in Fig. 1b splits into two
distinct surfaces, the 2D unstable manifold WU of z` and
the 2D stable manifold WS of zu (Fig. 1a). (The sta-
ble/unstable manifold consists of all points that converge
upon zu/z` in forward/backward time.) These two mani-
folds first intersect at the primary intersection curve, p0,
defining the unstable cap WU [p0], the piece of the unsta-
ble manifold between z` and p0, and stable cap WS [p0].
The vortex interior is the region between the stable and
unstable caps. An intersection curve, e.g. p0, maps for-
ward and backward to other intersection curves, e.g. p1

and p−1 (Fig. 1a).

HLD, from scattering data to symbolic dynam-
ics. – Due to the broken separatrix, some advected par-
ticles outside the vortex will enter the vortex and sub-
sequently escape. We treat this as a scattering problem
(Fig. 1c), where the two impact parameters identify an
initial point on the unstable cap, restricted to the domain
WU [p−1,p0] between p−1 and p0. The forward escape-
time plot (ETP), Fig. 1c, is the number of iterates required
to escape the vortex as a function of impact parameters.
It is comprised of escape domains, which escape at a given
iterate, surrounded by gaps, which have yet to escape. The
backward ETP is defined analogously on WS [p0,p1] mov-
ing backward in time. Fig. 1d is a clearer-to-read cartoon
of the forward ETP up to iterate 3; Fig. 1e is the back-
ward ETP. Each boundary of the forward ETP eventually
maps to a boundary of the backward ETP, as indicated
by the subscripts. The ETPs constitute the input data for
the HLD analysis. [32] Here we give a brief summary of
how the analysis proceeds. The algorithm is detailed in
Ref. [32].

The unstable manifold is partitioned into pieces, called
bridges, by cutting along the stable cap. Each bridge
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Fig. 2: Symbolic Dynamics. a, The active recurrent bridge classes and their iterates. Boundary classes marked with a dotted
circle represent inert boundary classes. Bridge classes are considered equivalent if they only differ by inert boundary classes, for
example bridge classes with boundaries [[B1, F,G,C0]] and [[B1, F,G,C0, D1, B0, B0]]. b, Transition graph for the 2D bridge
classes in a. c, The 1D bridge class dynamics where α1/β1 1D bridge classes are embeddable in α2/β2 2D bridge classes. a-c
represent the symbolic dynamics from iterate-three data. d, shows the 2D bridge class transition graph for the dynamics from
iterate-four data.

is specified by the collection of curves that make up its
boundary with the stable cap. Up to a given iterate of the
unstable cap, the topology of each bridge and how bridges
connect together can be reconstructed using the data in
the forward and backward ETPs. The topology of this
part of the tangle can be enforced by a set of systemat-
ically chosen obstruction rings. When placed in the 3D
phase space, these obstruction rings act as impediments
to pulling bridges through the stable cap, thereby preserv-
ing the topological complexity of the tangle. Obstruction
rings partition the set of bridges into equivalence classes.
Two bridges are of the same homotopy class, or bridge
class, if one can be continuously deformed into the other
without passing through an obstruction ring. These bridge
classes form the central symbolic objects in our analysis,
and their behavior under iteration constitutes a symbolic
dynamical system.

Bridge classes can be specified by the homotopy classes,
or boundary classes, of their boundary curves. This moti-
vates the “barbell” pictograms of Fig. 2a as useful graph-
ical representations of bridge classes. The labeled cir-
cles represent the boundary classes, and the lines con-
necting them represent the bridge class itself. Evolving
forward one period, each bridge class maps to a set of
bridge classes, glued together at their common boundaries
(Fig. 2a). The algorithm produces a set of bridge classes
that is closed under iteration, and excludes bridge classes
that are transient (non-recurrent under the dynamics) or
inert (map to exactly one bridge class after repeated itera-
tion). This set and their relationships under the mapping,
Fig. 2a, constitute the output data of the HLD analysis.
The graph in Fig. 2b records the allowed transitions be-
tween bridge classes. The graph can also be presented as a
transition matrix, A, where Aij is the number of directed
edges connecting vertex j to vertex i.

The HLD analysis can be repeated for 1D bridges, paths

beginning and ending on the stable cap and embedded in a
2D bridge. These 1D bridges are grouped into 1D bridge
classes based on how they wrap around the obstruction
curves. The forward iterates of 1D bridge classes can be
obtained by iterating the 2D bridge classes in which they
are embedded. Fig. 2c shows the transition graph of the
resulting symbolic dynamics.

Topological entropy and stretching rates. – The
vortex mixing is quantified by its topological entropy,
which measures the exponential growth rate of “distin-
guishable” orbits as a function of time [35,36]. Intimately
related is the topological entropy of the symbolic dynam-
ics, or symbolic entropy — the log of the largest eigen-
value of A. Since the symbolic dynamics represent the
minimal topology forced by our knowledge of the tangle,
its symbolic entropy is a lower bound to the full topo-
logical entropy of the advection map. Importantly, we
can systematically increase this lower bound by including
ETP data at successively higher iterates. In this study,
data up to iterate three (Fig. 2b) gives a symbolic en-
tropy of ln (1.6956), while the extra data at iterate four
(Fig. 2d) increases this to ln (2.1106). For comparison,
we directly computed the full topological entropy to lie
between ln (2.7114) and ln (2.8210) using an independent
approach [37], confirming our symbolic calculation as a
lower bound.

Topological entropy also measures the maximum expo-
nential stretching rate of material advected in the fluid.
The symbolic entropies of the graphs in Figs. 2b and 2c
give lower bounds on the stretching rates of 2D material
surfaces and 1D material lines, respectively. Differing 2D
and 1D stretching rates are possible for the 3D HLD anal-
ysis, (see ref. [32]). However, in this example the 1D and
2D stretching rates are both ln (1.6956) for the iterate-
three analysis and ln (2.1106) for the iterate-four analysis.
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Fig. 3: Fractal Structure Numerical self-similar fractal regions. a, A complicated, fundamentally 2D, fractal structure. b,
The three boxes on the top row each show three annular bands which repeat indefinitely upon zooming into the right-most gap,
described by symbol 7 in Fig. 2d (which is the iterate-four-analysis analogue of symbol 6 in Figs. 2a-c). In the bottom row,
from left to right, the minimal number of iterate-five escape domains forced by iterate-four knowledge are 0, 0, and 2. The
extra observed escape domains in the first two bottom boxes illustrate that the actual structure can be more complicated than
the forced structure, and that higher-iterate information should be included in the analysis to enlarge the forced dynamics.

p-4



Topological Chaos in a Three-Dimensional Spherical Fluid Vortex

The equality of these rates reflects a deep structural sim-
ilarity between the 1D and 2D stretching mechanisms, as
discussed next.

Two stretching mechanisms. – The transition
graph (Fig. 2b) has two strongly connected components
(SCCs), labeled α2 and β2. Each SCC represents a distinct
stretching mechanism: The β2 mechanism stretches ma-
terial in one dimension, while the α2 mechanism stretches
material in two dimensions. To see this, note that each
bridge in the β2 SCC is a simple tube (with two bound-
ary components), which is stretched out along its axis to
multiple tubes under iteration, as seen in equations 6-9
of Fig. 2a, where each barbell is mapped to a chain of
barbells. These tubes can thus be identified with the 1D
bridge classes that run down their lengths, as reflected
in the corresponding vertices of the β2 and β1 SCCs of
Figs. 2b and 2c. However, the bridge classes in α2 have
a varied number of boundary components. Furthermore,
there are only three distinct 1D bridge classes embedded in
the 2D bridges of α2, forming the α1 SCC of Fig. 2c. But
α1 has zero symbolic entropy, whereas α2 does not, mean-
ing that all of the α2 entropy generates fully 2D stretch-
ing. For example, symbol 1 in α2 represents caps that are
pushed down against the unstable cap WU [p0] in the z-
direction, and stretched radially outward, away from the
lower fixed point, in x and y. This fundamentally 2D be-
havior is also reflected in equations 1-5 of Fig. 2a, which
exhibit branching not possible for 1D stretching. These
two stretching mechanisms exist in the iterate-four dy-
namics as well (Fig. 2d).

While α2 and β2, differ in the dimensionality of their
stretching, their symbolic entropies are identical. More
tellingly, when taken as formal symbolic dynamical sys-
tems, i.e. bi-infinite shifts, we discovered a strong shift
equivalence between α2 and β2, implying that their dy-
namics are topologically equivalent [38, 39]. These facts
hold at iterate four as well. We conjecture that this equiva-
lence is due to an underlying duality between forward-time
1D dynamics and backward-time 2D dynamics.

Fractal structure. – We started with scattering data
in the ETPs, from which we derived a symbolic dynam-
ics. Conversely, we can use the full symbolic dynamics
to reconstruct the ETPs. More importantly, we used
the symbolic dynamics represented by Fig. 2d to predict
new, topologically-forced, escape domains at higher iter-
ates. We then validated these predictions against direct
numerical computations of the ETP at higher iterates. We
focused on closed cycles in the transition graph, which gen-
erate fractal self-similar patterns in the ETP. Each symbol
represents a motif in the fractal ETP — every gap labeled
by that symbol will contain the same motif at higher it-
erates. For example, consider the 3-cycle 1 → 2 → 3 in
Fig. 2d. Every symbol “1” generated upon traversing this
cycle once corresponds to a gap in each of the three pan-
els of Fig. 3a. Zooming into this gap replicates this motif
ad infinitum. Since this cycle is within the α2 stretch-

ing mechanism, the associated motif is fundamentally 2D.
Contrast this with the 1-cycle of 7 repeated within the β2
stretching mechanism (Fig. 2d), whose associated motif is
in the top three boxes of Fig. 3b. This motif is essentially
1D. In both Fig. 3a and Fig. 3b, the symbolic dynam-
ics predict the exact fractal structure in the numerical
ETPs. Note that iterate-four information was needed to
produce such accurate symbolic dynamics, demonstrating
the necessity —and power— of folding in new information
at higher iterates. Indeed, at iterate five and higher, es-
cape domains exist that are not predicted by iterate-four
knowledge, e.g. the lower row of Fig. 3b shows extra,
unpredicted bands at iterate five. Aside from being beau-
tiful manifestations of the complexity inherent in the vor-
tex, our fractal analysis demonstrates the important idea
that finite knowledge of the scattering data forces the ex-
istence of an infinite succession of predictable structures
in the tangle and ETPs.

Conclusions. – Successfully extending the 2D HLD
technique to 3D paves the way for a structural characteri-
zation of the chaotic dynamics of other volume-preserving
systems, like charged particles following magnetic field
lines, shifting granular media, as well as many other 3D
fluid flows. Furthermore, the HLD technique is algorith-
mic and amenable to automation. This would enable much
higher iterates to be analyzed and also permit analyses
of bifurcating mixing mechanisms. Finally, this current
work is a spring-board to further extending the HLD tech-
nique to 4D symplectic maps derived from three-degree-
of-freedom Hamiltonian systems, opening up many more
applications, e.g. to chaotic atomic and molecular scat-
tering.
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[15] Drótos G., González Montoya F., Jung C. and Tél
T., Phys. Rev. E, 90 (2014) 022906.

[16] Drótos G. and Jung C., Journal of Physics A: Mathe-
matical and Theoretical, 49 (2016) 235101.

[17] Wiggins S., Chaotic Transport in Dynamical Systems
(Springer-Verlag, New York) 1992.

[18] Easton R., Geometric Methods for Discrete Dynamical
Systems (Oxford University Press, New York) 1998.

[19] Rom-Kedar V., Nonlinearity, 7 (1994) 441.
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