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Abstract

Hamiltonian systems typically exhibit a mixture of chaos and regularity, complicating any scheme to partition phase space and
extract a symbolic description of the dynamics. In particular, the dynamics in the vicinity of stable islands can exhibit complicated
topology that is qualitatively distinct from that away from the islands. We develop an approach to partition the chaotic phase
space of a general dynamical system represented by a two-dimensional map (homeomorphism). This approach can accommodate
mixed phase space structure with an arbitrarily high degree of accuracy. The partitioning scheme is built around networks of nested
heteroclinic tangles – fundamental geometric objects that organize phase space transport. These tangles can be used to progressively
approximate the dynamics in the vicinity of stable island chains. The net result is a symbolic approximation to the dynamics in
the chaotic sea, and an associated phase-space partition, which includes the influence of stable islands and which is approximately
Markov.
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1. Introduction

This paper develops a general strategy for partitioning the
phase space of a dynamical system specified by a map (home-
omorphism) on a two-dimensional phase space. In physical ap-
plications, such maps often arise either as the time-advance map
of a periodically forced Hamiltonian or as the Poincaré return
map defined on a surface of section for an autonomous Hamilto-
nian. Though we have in mind Hamiltonian systems, for which
the maps are area preserving, area preservation itself is not re-
quired for the present technique.

Partitions provide a powerful tool to analyze chaotic sys-
tems [1, 2]. Partitioning phase space into distinct regions leads
to a discrete description of the dynamics—the current state of
the system is described by the partition element in which it re-
sides, rather than its precise location in phase space. By assign-
ing a unique symbol to each such element, a trajectory of the
original system can be assigned a symbolic itinerary. A “good”
partition generates an equivalent (or nearly equivalent) repre-
sentation of the original dynamics in terms of a shift map on
the symbolic itineraries. For many problems, the study of the
symbolic representation, i.e. the itineraries and associated shift
map, is easier than the original representation of the dynam-
ics [2]. For example, a symbolic representation greatly simpli-
fies the task of counting, labeling and classifying the periodic,
heteroclinic, and other chaotic orbits; it helps in studying the
fractal properties of the dynamics; and it allows the direct com-
putation of rigorous bounds on topological entropy.

Explicit partitions have numerous other practical benefits. As
one example, they are useful tools for finding periodic orbits,
which themselves have a host of applications to both classical
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and quantum dynamics [3, 4]. A typical strategy for finding
a periodic orbit begins with an accurate initial guess, which
is then refined by Newton’s method; partitions are useful for
constructing the initial guess. As a second example, partitions
provide a basis to approximate the Frobenius-Perron operator
following Ulam’s method [5, 6], from which escape rates, Lya-
punov exponents, and invariant measures can be computed.

Despite their utility, in practice it is often not obvious how to
explicitly construct a good partition. (See for example Ref. [7].)
Though the simplest case of a one-dimensional map on an inter-
val has been well studied using kneading theory [8, 9], for two-
dimensional maps, the theory is less complete. The existence of
Markov partitions is well established in the hyperbolic case [1],
and a partitioning technique for the dissipative Henon map was
introduced by Grassberger and Kantz [10, 11]. (See also the
work on pruning [12].) However, in physical applications most
Hamiltonian systems generate non-hyperbolic maps, which ex-
hibit a mixture of regular motion (islands of stability) embed-
ded within a chaotic sea. In such cases, much less is known.
Important work toward this end are the papers of Christiansen
and Politi [13, 14, 15] and Jung and Emmanouilidou [16]. A
primary reason for the difficulty encountered in mixed phase
spaces is that the dynamics in the vicinity of the stable islands
can be radically different from that away from the islands.

This paper describes a technique to construct phase space
partitions that is flexible enough to accommodate the influ-
ence of stable islands on the dynamics within the surrounding
chaotic sea. The accuracy of the partition can be systematically
refined to include arbitrarily fine-scale structure, either near the
islands or anywhere else in phase space. At any stage of reso-
lution, the partition provides a Markov model to the dynamics
within the chaotic sea, in the sense that there is an associated
Markov shift with the property that every allowed itinerary of
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Figure 1: (Color online) Figure 1a shows a trellis (finite-length stable and unstable intervals) for a member of the area-preserving Henon family of maps. Figure 1c
shows an expanded view of the black rectangle. This expansion highlights the period-two island chain and surrounding tangle attached to the central fixed point x.
Figure 1b shows the partition constructed from the manifolds in Fig. 1a, with each partition domain shaded a randomly chosen color. Figure 1d shows an expanded
view of the partition in the vicinity of the stable islands. There are a total of 114 domains in the partition.

the shift corresponds to (at least) one trajectory of the original
dynamical system.

Figure 1 shows an example drawn from the area-preserving
Henon family. The left column shows finite-length intervals
of stable and unstable manifolds attached to two fixed points x
and y. (Fig. 1c is an expansion of the black box in Fig. 1a.)
The stable intervals are the two thick, red curves. The unsta-
ble intervals are the thin, blue curves, which explore a large
region of phase space with considerable density. The topolog-
ical structure of the stable and unstable manifolds, in terms of
how they intersect and how these intersections map forward,
encodes considerable information about the topology of the dy-
namics. Using the methods presented here, this information
allows us to construct the partition shown in the right column
of Fig. 1, where each domain of the partition is shaded with a
randomly chosen color. The primary purpose of this paper is to
explain this construction, i.e. how the partition on the right can
be constructed from the information stored in the curves on the
left.

The dynamics in Fig. 1a contains a period-two stable is-
land chain, most easily seen by the ensemble of black points
in Fig. 1c. Note in Fig. 1d that the partition domains extend
into the region immediately surrounding the islands, meaning

that the dynamics in the vicinity of the islands is incorporated
into the partition construction. The reason we are able to do
this is that the unstable manifolds in Fig. 1c themselves explore
the vicinity of the islands. In fact, we have utilized the sta-
ble and unstable manifolds attached to the central fixed point
x of Fig. 1c to specifically target this region. Typically, within
the vicinity of a stable island chain, we can extract information
about the local dynamics by computing the heteroclinic tangle
attached to unstable periodic points lying between the individ-
ual islands.

This paper builds on our prior studies [17, 18, 19] of the
topology of networks of heteroclinic tangles and the symbolic
dynamics encoded by them. An independent approach to this
problem has also been developed by Collins [20, 21, 22, 23, 24].
Both approaches present algorithms to extract symbolic dynam-
ics from tangles without ever introducing a partition. In the case
of Refs. [17, 18, 19], symbolic dynamics is cast in terms of ho-
motopy theory, focusing on how curves, rather than domains,
map forward. In the case of Refs. [20, 21, 22, 23, 24], symbolic
dynamics is based on the theory of train tracks and the Bestvina-
Handel algorithm [25, 26]. Additional topological studies of
tangles can be found in Refs. [27, 28, 29, 30, 31, 32, 33, 16].

The present work should be distinguished from set-oriented
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methods [34], which also partition phase space into domains,
typically simple rectangular cells on a regular, though possi-
bly refined, grid. Such set-oriented techniques emphasize the
measure-theoretic aspects of transport. The objective here is to
develop topologically relevant partitions yielding an approxi-
mately Markov symbolic dynamics.

This paper is structured as follows. Section 2 summarizes
the key results of the homotopic lobe dynamics technique de-
veloped in Ref. [17]. Section 3 introduces the concept of “ro-
bust distorted bridges”, or RoD-bridges. These are unstable in-
tervals needed in the construction of the partition rectangles.
The RoD-bridges have a natural ordering, which is discussed in
Sec. 4. Section 5 then explains how the partition rectangles are
constructed from supremum and infimum intervals of this or-
dering. Section 6 introduces symbolic itineraries for the RoD-
bridges, and Sec. 7 shows how the ordering of RoD-bridges
can be computed from their itineraries. Finally, in Sec. 8, the
itineraries of the intervals bounding the partition rectangles are
constructed. This final step allows the partition rectangles to
be explicitly computed. An example is worked out in Sec. 9.
Section 10 contains concluding remarks.

2. Homotopic Lobe Dynamics

The theory of homotopic lobe dynamics is a method of ex-
tracting symbolic dynamics from finite-length intervals of sta-
ble and unstable manifolds. As initially developed, the theory
makes no use of phase space partitions. We summarize here
the main points of the theory (following Ref. [17]), before ex-
plaining in subsequent sections how it leads to a partitioning
scheme.

2.1. The initial trellis T
In this paper, the dynamics is specified by a map M defined

on a subdomain of the plane. (Specifically, M is assumed to be
a homeomorphism.) We then consider a heteroclinic 1 tangle
W of M [35]. The tangle W consists of the one-dimensional
stable and unstable manifolds, denoted WS and WU , that are
attached to some set of unstable periodic orbits, denoted P. We
call P the set of anchor points. Though the stable and unstable
manifolds of P do not self-intersect [35], they can and typi-
cally do intersect one another, forming a complicated pattern of
criss-crossing curves that justifies the name tangle. Since these
manifolds are infinitely long, we consider only the information
contained in a finite-length truncation, which we call a trellis,
following Collins [20, 21, 36, 22, 23, 24]. 2

Definition 1 (trellis). A trellis T consists of a finite set P of un-
stable periodic orbits, which we call the anchor points, together
with subsets T S and T U of the stable and unstable manifolds

1Since there is no common term that includes both homoclinic and hetero-
clinic, we use heteroclinic as a generic term here, encompassing both homo-
clinic and heteroclinic.

2Our use of “trellis” differs subtly from that of Rom-Kedar [29, 30], who
uses the term “trellis” for a complete tangle W, with infinitely long manifolds,
that is described by a finite amount of information.

WS and WU of P, where T S and T U are each the union of a
finite number of compact subintervals (of nonzero length), and
where M(T S ) ⊂ T S and M(T U) ⊃ T U .

In practice, the trellis is almost always computed numeri-
cally, often guided by some initial knowledge or intuition about
the phase space structure.

The full tangle W is generated by infinitely many iterations
of the trellis T , i.e. WU = ∪n≥0Mn(T U) and WS = ∪n≤0Mn(T S ).
It is important to emphasize, however, that the trellis T is fixed
at the beginning of this analysis, and all subsequent analysis is
based on the topological information contained in T . Though
the construction of the partition may necessitate the use of inter-
vals contained in W but not T , as we shall discuss in detail later,
the prescription for constructing the partition is based solely on
the topological information in T . (For example, the topological
entropy of the transition matrix for the partition can be com-
puted from T .)

We define WS
z to be the connected component of WS con-

taining the periodic point z ∈ P, and we define T S
z = T S ∩WS

z .
We define WU

z and T U
z analogously. We use WS [p,q] for the

closed interval of WS between two points p,q ∈ WS and simi-
larly WS (p,q), WS [p,q), WS (p,q] for the corresponding open
and half-open intervals. Analogous notation is used for WU ,
T S , and T U .

A stable branch of W is an interval BS
z = WS [z,∞) that

has one endpoint anchored at z ∈ P and that extends away
from z for an infinite arc length along WS . An unstable branch
BU

z = WU[z,∞) is defined analogously. Each stable or unsta-
ble branch Bz has a minimum period p such that Mp(Bz) = Bz.
Clearly, the period of the point z must divide the period of the
branch Bz. Finally, a branch of the trellis T is defined as the
intersection between T and a branch of the tangle W.

We require that T satisfy the following further conditions.

1. Connectedness Condition Every stable branch BS
z of T S

consists of a single compact interval of WS . We denote
the endpoints of T S that are not in P by the set N (for
Nonperiodic).

2. Alternating Branches Condition For each periodic point
z ∈ P, an equal (and nonzero) number of stable and un-
stable branches of T are attached to z, alternating between
stable and unstable as one encircles z.

3. Primary Intersection Condition Each unstable branch
BU

z of T U contains a unique point p ∈ N. Furthermore,
T U(z,p) ∩ T S = ∅, i.e. the (open) unstable interval con-
necting z to p does not intersect any of the stable branches
of the trellis.

4. Endpoint Condition For any endpoint x of a connected
component of T U , its preiterate M−1(x) must lie in T S \N.

5. Transversality Condition Any trellis intersection T S∩T U

that is not an endpoint of T U is topologically transverse,
i.e. at such an intersection point, T U passes locally from
one side of T S to the other side of T S .

One consequence of these conditions is that all endpoints of
T U lie in T S , and all endpoints of T S lie in T U . Also, the Pri-
mary Intersection Condition implies that each point in N is a
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Figure 2: (Color online) The above is a simplified version of Fig. 1a, illustrating
the four zones defined by the trellis. The points x, y ∈ P are fixed points and
q, r, s ∈ N are pips. The stable intervals in T S and the unstable intervals in
T̂ U = ∪{T U [z,p]|z ∈ P,p ∈ N} divide the plane into the four zones I, II,
III, and IV. Thick (red) curves are stable segments and thin (blue) curves are
unstable segments, a convention we use throughout the paper.

primary intersection point, or pip, as defined by Rom-Kedar
and Wiggins [37] 3. As discussed in Ref. [17], the Alternating
Branches and Transversality Conditions can be relaxed some-
what.

We call an initial trellis interval T U[z,p], connecting an an-
chor point z ∈ P to a pip p ∈ N, an anchor interval (or anchor
bridge, see Sec. 2.3). The collection of all anchor intervals is
denoted T̂ U = ∪{T U[z,p]|z ∈ P,p ∈ N}. The anchor intervals
together with the stable intervals in T S divide the plane into
disjoint regions called zones. See Fig. 2 for an illustration.

Example: We shall illustrate the concepts in this pa-
per using the same example map used in Ref. [17],
which is a surface-of-section map defined for a hy-
drogen atom in applied parallel electric and magnetic
fields [38, 39]. [Following Ref. [17], the electron en-
ergy is E = 0.5 and the magnetic field strength is
B = 2.141, in scaled units.] Figure 3a shows the trel-
lis, and Fig. 3b is a qualitative rendering showing the
topology of the unstable manifold more clearly. The
trellis has a single stable and unstable branch, with
P = {z} and N = {p0}. The stable branch T S and un-
stable interval T̂ U = WU[z,p0] divide the plane into
two zones, the resonance zone and the external zone.

2.2. Homotopy

The key step in the topological analysis is to punch holes in
the plane adjacent to judiciously selected heteroclinic points,
called pseudoneighbors.

3A pip is an intersection point p ∈ WU
z ∩ WS

z′ , with z, z′ ∈ P, such that
WU

z (z,p) ∩WS
z′ (z

′,p) = ∅.

Definition 2 (pseudoneighbors). Defining X =

∪n∈Z{Mn(x)|x ∈ T S ∩ T U}, two homo/heteroclinic intersection
points x, x′ ∈ X are called a pair of pseudoneighbors (with
respect to T) if x and x′ lie on the same stable and unstable
branches of W and if WS (x, x′) ∩ X = WU(x, x′) ∩ X = ∅.

In short, the stable and unstable (open) intervals connecting
a pair of pseudoneighbors contain no trellis intersection nor any
iterate of a trellis intersection. For a given pair of pseudoneigh-
bors x and x′, we punch a hole inside the domain bounded by
the stable and unstable intervals WS [x, x′] and WU[x, x′] con-
necting them. The hole is placed infinitesimally close to one of
the two pseudoneighbors. (See Ref. [17] for details.)

The above definition implies that any iterate xn = Mn(x0) of
a pseudoneighbor is also a pseudoneighbor, meaning that each
pseudoneighbor generates an entire orbit of pseudoneighbors.
For each such orbit, the holes, likewise, are placed so as to
form an orbit, i.e. the holes are arranged in bi-infinite sequences
where each hole maps to another hole.

Example: In Figs. 3a and 3b, the “3” marks a pair of
pseudoneighbors. The neighboring circle represents
the associated hole. Mapping this hole forward and
backward generates a bi-infinite sequence of holes
associated with the pair of pseudoneighbor trajecto-
ries, converging upon z in both forward and backward
time.

In addition to holes next to pseudoneighbors, for technical
reasons we also punch holes adjacent to the pips in N and their
preiterates. Since these holes do not play a central role here, we
refer to Ref. [17] for further discussion.

For a directed curve (or path) A that begins and ends on T S

and that does not intersect any hole, its homotopy class [A] con-
tains all directed curves obtained from continuously distorting
A without passing through any hole and without removing the
endpoints from T S . Homotopy classes admit a natural multi-
plicative structure. If A ends on the same connected component
of T S that another curve B begins, then the product of classes
[A][B] is the homotopy class of the curve formed by A concate-
nated with B, where the final point of A is joined to the initial
point of B by an interval of T S . Furthermore, [A]−1 is the ho-
motopy class of the curve A with its direction reversed. Clearly
[A][A]−1 is trivial, meaning that any representative curve from
this class is contractable to a point.

2.3. Bridge-classes
The unstable manifold WU can be cut into intervals called

bridges.

Definition 3 (bridge). A bridge is a closed interval of WU that
begins and ends on T S , but does not otherwise intersect T S .

Associated with bridges are the following homotopy classes.

Definition 4 (bridge-class). A bridge-class is the homotopy
class of a directed curve B that forms a closed interval of WU

that begins and ends on T S , and such that B can be homotopi-
cally deformed into a directed curve that only intersects T S at
the curve’s endpoints.
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Figure 3: (Color online) Segments of the homoclinic tangle computed from the map defined in Ref. [39] for parameters E = 0.5 and B = 2.141. The thick (red)
curves are stable segments and the thin (blue) curves are unstable segments. An unbarbed (triangular) arrow, as in Fig. 3a, denotes the natural dynamical order
along the stable or unstable manifold. A barbed arrow, as in Fig. 3c, denotes the direction of a bridge-class. Shaded circles denote holes. (a) The initial trellis, from
which the homotopic lobe dynamics will be extracted. (b) A qualitative depiction of Fig. 3a. The resonance zone is shaded. (c) Representative curves for the most
important bridge-classes. (d) and (e) each shows a representative curve and its forward iterate.

Clearly, the homotopy class of a bridge is a bridge-class, but
a bridge-class need not contain a bridge.

Example: Fig. 3c shows one representative bridge
from each of four bridge-classes a1, a2, f , and u0.
Classes a1 and a2 encircle holes 1 and 2, respectively,
whereas f encircles both. The class u0 encircles hole
3. Iterating u0 forward generates an infinite sequence
of classes u0, u1, u2, ... (only u0 shown), encircling
holes 3, 4, 5, ... .

We should clarify here an important point about the orienta-
tions of unstable intervals. First, the dynamics naturally endows
any stable or unstable interval with an orientation, or direction.
For a stable interval, this direction points along the manifold
toward the periodic point, whereas for an unstable interval, this
direction points away. In the figures, this dynamical direction is
denoted by unbarbed (triangular) arrows. However, if we con-
sider an unstable interval as a representative curve of a bridge-
class, it carries another direction, defined by the orientation of
the class. This homotopy direction may or may not be equal to
the dynamical direction. In the figures, the homotopy direction
is distinguished by barbed arrows.

A (nontrivial) bridge-class a is said to lie within a particular
zone if it contains a representative curve that lies entirely within

that zone (ignoring endpoints). Every (nontrivial) bridge-class
lies within a unique zone.

Example: In Fig. 3c, classes a1, a2, and f lie within
the resonance zone, and u0, u1, u2, ... lie within the ex-
ternal zone.

The homotopy class of an interval WU[p,q] can be expressed
as a product of bridge-classes in a unique canonical form, called
the concise product.

Definition 5 (concise product). A product of n (nontrivial)
bridge-classes a1...an is said to be concise if no two adjacent
factors belong to the same zone.

The advantage of the concise product is that it allows one to de-
termine topologically forced intersections. If a1...an is the con-
cise product of [WU[p,q]], then there is a topologically forced
intersection of WU[p,q] with T S between each pair of factors
aiai+1. This idea is further clarified by Lemma 2 in Sec. 3. Note
this is only a minimal set of intersections, and there may, in fact,
be more (unforced) intersections between WU[p,q] and T S .

2.4. Dynamics of bridge-classes
The map M on phase space induces a new map (also de-

noted M) on homotopy classes, according to M([A]) = [M(A)].
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This new map satisfies the homomorphism properties M(ab) =

M(a)M(b) and M(a−1) = M(a)−1 for any classes a and b.

Example: We seek the first iterates of the bridge-
classes a1, a2, f , u0, u1, ... shown in Fig. 3c. Fig. 3d
and Fig. 3e show M(a1) and M(a2), from which we
determine

M(a1) = f −1u0a2u−1
0 f , (1)

M(a2) = f −1u−1
0 f . (2)

Using f = a2a1 and the homomorphism properties of
M, we also have

M( f ) = M(a2a1) = M(a2)M(a1)

= ( f −1u−1
0 f )( f −1u0 a2u−1

0 f ) = a−1
1 u−1

0 f . (3)

Finally, we see

M(un) = un+1. (4)

Of particular importance are the iterates of each bridge-class
expressed in concise form, as is the case for Eqs. (1) – (4). We
call this the concise bridge dynamics. The concise bridge dy-
namics is important because the forward iterate M(b) of a con-
cise product b = a1...an may be obtained in concise form by
simply replacing ai with the concise representation of M(ai),
for every i. Thus, we can map a concise product forward an
arbitrary number of times into a new concise product by simply
using the concise bridge dynamics as a set of substitution rules
at each iterate.

The concise dynamics allow us to re-interpret each bridge
class b as a symbol in symbolic dynamics. (Note that we do
not consider b−1 to be a separate symbol.) A convenient way
to visualize such dynamics is with a transition graph, in which
there is a vertex for each symbol and in which a (directed) edge
connects vertex a to vertex b if b (or b−1) appears in M(a). The
edge is weighted by the number of appearances of either b or
b−1 in M(a). Figure 4 shows the transition graph for Eqs. (1)
– (4). The transition graph can be represented by a transition
matrix T , for which Ti j equals the number of copies of symbol
i which occur in the iterate of symbol j, i.e. the weight of the
edge connecting j to i.

All bridge-classes can be classified as either active or inert.

Definition 6 (inert and active bridge-classes). A bridge-
class u is said to be inert if Mn(u) is a bridge-class for all
n ≥ 0. A bridge-class is said to be active if it is not inert.

From this definition, we see that the inert bridge-classes form
sequences un, n ≥ 0, where M(un) = un+1. We call the first class
u0 the primary class of the sequence.

Example: The external bridge-class u0 surrounding
hole 3 in Fig. 3c is the primary inert class for the
sequence of inert classes u0, u1, u2, ... (not shown),
which surround holes 4, 5, ... . The classes a1, a2,
and f are active.

2

a1 a2

f

u∗

2

2

T =




a1 a2 f u∗
a1 0 0 1 0
a2 1 0 0 0
f 2 2 1 0
u∗ 2 1 1 1




Figure 4: The transition graph and matrix for Eqs. (1) – (4). The symbol u∗
represents all classes uk . The edges connecting a1 to f , a1 to u∗, and a2 to f
each have weight 2. All other edges have weight 1.

a

b uk

Figure 5: (Color online) The active classes a and b differ only by the inert class
uk , satisfying a = buk . Shaded circles denote holes.

Suppose two active bridge-classes a and b differ by an inert
class uk, e.g. a = buk (Fig. 5). Then the forward iterates of
a and b generate exactly the same forced intersections. In this
sense, a and b are functionally equivalent, and so we symbol-
ically identify a and b, i.e. we use the same symbol for both.
Once we identify all such active classes, there are only a finite
number of active bridge-classes.

Finally, we shall construct partition elements only for sym-
bols in the chaotic component of the symbolic dynamics, de-
fined as follows. First, define a ∼ b for two symbols a and b if
b lies within the concise string Mk(a) for some k ≥ 0 and a lies
within the concise string Mk′ (b) for some k′ ≥ 0. Equivalently,
a ∼ b if there is a path in the transition graph connecting a to
b and another path connecting b to a. The relation ∼ partitions
the set of symbols into equivalence classes, each of which is a
strongly connected component of the transition graph. The dy-
namics can be restricted to each such component, and the topo-
logical entropy defined on it, using the restricted transition ma-
trix. Some components may have zero topological entropy. For
example every inert symbol forms a class unto itself with zero
entropy. We shall, however, only be interested in those compo-
nents with nonzero topological entropy. We refer to these as the
chaotic components of the symbolic dynamics and the symbols
in the chaotic components as the chaotic symbols. The chaotic
components include only active symbols, though not every ac-
tive symbol is necessarily in a chaotic component.
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2.5. Algorithm to generate the concise dynamics of bridge-
classes

To summarize, the algorithm below generates the set of
bridge-classes B and the concise product for M(b), for each
b ∈ B. (See also [40].)

1. Beginning with a trellis T that satisfies the conditions in
Sec. 2.1, identify the zone boundaries T S ∪ T̂ U and the
corresponding zones.

2. Identify all pseudoneighbor pairs within the trellis. Punch
a hole adjacent to one point in each pair of pseudoneigh-
bors (Sec. 2.2), and identify the topological location of all
forward and backward iterates of each hole. (Formally,
holes should also be punched adjacent to each point p ∈ N
and the preimages Mn(p), n < 0.)

3. Identify all bridge-classes of bridges formed from seg-
ments of T U , and note which zone each lies within
(Sec. 2.3). Denote this set of bridge-classes by B. (For
simplicity, we need only include a bridge-class b or its in-
verse b−1.)

4. For each primary inert bridge-class u0 in B, add the re-
sulting infinite sequence of inert bridge-classes ui, i ≥ 0,
into B. Furthermore, use the same symbol for two bridge-
classes a and aui, where a is active, ui is inert, and a and
ui are in the same zone. (Sec. 2.4.)

5. Express the forward iterate M(b) of each active bridge-
class b ∈ B as a product of bridge-classes. Whenever pos-
sible, take advantage of the group homomorphism prop-
erty M(ab) = M(a)M(b), for bridge-classes a, b, and ab
(Sec. 2.4).

6. For each b ∈ B, express each forward iterate M(b) in con-
cise form (Sec. 2.3). If in constructing the concise form, a
new bridge-class c is identified, add c intoB (noting which
zone it lies within) and repeat from Step 4.

This algorithm is guaranteed to stop. After its completion,
the chaotic components of the transition graph can be identified,
as discussed in Sec. 2.4. It is for these chaotic symbols that we
shall construct partition elements.

3. Distorted bridges

The concept of a bridge, as defined above, proves to be too re-
strictive for the construction of partition elements, requiring us
to introduce a more flexible concept. As discussed in Sec. 2.5,
the infinitely long unstable manifold WU of the tangle is tightly
constrained by the initial finite-length intervals T U of the trel-
lis. However, though the subsequent development of WU be-
yond T U is required to have a minimum set of topologically
forced intersections with T S , it typically contains additional in-
tersections that are not topologically forced. This leads us to
the concept of a distorted bridge.

Definition 7 (distorted bridge, D-bridge). An unstable inter-
val B is said to be a distorted bridge, or D-bridge for short, if
B has only removable intersections, that is, if B can be homo-
topically distorted into a non-self-intersecting curve that only
intersects T S at the endpoints of B.

c)

b)a)

Not D−bridges

f)e)

D−bridges with no trivial ends

D−bridges with trivial ends

d)

Figure 6: (Color online) Examples illustrating the concepts of D-bridges and
trivial ends.

Examples (a) and (b) in Fig. 6 are clearly not D-bridges, but
the remaining examples are. Note that all bridges are D-bridges,
but not vice versa. Note also that the homotopy class of a D-
bridge is, by Definition 4, a bridge class.

We shall primarily be interested in D-bridges that are topo-
logically robust, as defined below. First, we introduce a few
preliminary terms. An interval of WU is said to be degenerate
if it is a single point. An interval of WU is said to be trivial
if it is homotopically contractible to a point. A trivial interval
B is said to be even or odd if it has an even or odd number of
topologically transverse intersections with T S . Thus, if the un-
stable manifold is continuously distorted so as to contract an
odd trivial subinterval to a point, the resulting distorted curve
maintains a transverse intersection with T S at this point. On
the other hand, if an even trivial subinterval is contracted to a
point, that point may be shifted off of T S , thereby removing all
intersections from the original even subinterval. This is a sim-
ple consequence of the fact that intersection points annihilate
one another in pairs of opposite orientation.

Definition 8 (trivial ends). A trivial end of an unstable inter-
val B = WU[p,q] is a (nondegenerate) trivial subinterval of B
sharing a common endpoint with B.

An interval B = WU[p,q] thus has no trivial ends if B
contains no initial or final interval that is trivial, i.e. there
are no (nondegenerate) intervals WU[p, r] or WU[r,q], with
r ∈ WU(p,q), that are trivial. Examples (c) and (d) in Fig. 6
have trivial ends, whereas (e) and (f) do not. Also, a trivial
interval, e.g. Fig. 6d, has a trivial end consisting of the en-
tire interval. Note that any interval with trivial ends can be
shortened into an interval with no trivial ends by simply trim-
ming away the trivial ends. The trimmed interval clearly has
the same homotopy class as the original. Henceforth, we focus
on D-bridges without trivial ends.

A D-bridge B = WU[p,q] is said to be robust if, roughly
speaking, it is topologically forced by the trellis T . This prop-
erty can be characterized by examining the unstable intervals

7



b)

a)

c)

T S

T S

T S

Figure 7: (Color online) The unstable manifold forms a switchback that illus-
trates the robustness property. The three bridges shown in thickest bold on the
left sides of (a), (b), and (c) all have the same homotopy class (ignoring direc-
tion). However, the bold bridges in (a) and (b) are robust, whereas the bold
bridge in (c) is not. The bridge in (a) has a trivial adjacent interval, shown as
the hashed curve, that has an odd number of intersections, thereby satisfying
the definition of robust. (Its other trivial adjacent interval is degenerate.) This
hashed curve can be contracted to form the curve on the right. The same story
applies in (b). In example (c), however, the two adjacent trivial intervals on
either side of the bold bridge are even. When these intervals are contracted, the
endpoints of the original bridge can themselves be removed from T S . Thus,
even though the bold interval in (c) is a bridge, it is not robust.

adjacent to the interval B in question. Consider the longest triv-
ial interval WU[q, r] on one side of B and the longest trivial
interval WU[s,p] on the other. We call these the adjacent trivial
intervals of B. (Note that these intervals may be degenerate.)
As noted previously, if an adjacent trivial interval is odd, it can
be contracted to a point, leaving a single transverse intersection
at the endpoint of B (Fig. 7a and Fig. 7b). If, however, the adja-
cent trivial interval is even, no transverse intersection is left, and
the endpoint of B may be pulled off T S (Fig. 7c). This removal
of an endpoint of B from T S means that B is not topologically
robust. We thus define robust as follows.

Definition 9 (robust). An interval is said to be robust if it has
no trivial ends and if its adjacent trivial intervals are both odd.

We introduce the abbreviation RoD-bridges for robust dis-
torted bridges. RoD-bridges have several useful properties,
summarized below. (Proofs are left to the interested reader.)

Lemma 1. Two distinct RoD-bridges can only intersect at a
common endpoint, i.e. they can not intersect along a common
nondegenerate interval.

Furthermore, we may decompose an unstable interval into a
concatenation of RoD-bridges and trivial intervals.

Lemma 2 (RoD-bridge decomposition). Denote the homo-
topy class of a robust unstable interval C by the concise product
[C] = a1...an. Then C can be decomposed into a sequence of
concatenated curves A1, e1, A2, e2, ..., en−1, An, where Ai is a
RoD-bridge with [Ai] = ai and where all the intermediate inter-
vals ei are trivial and odd (and possibly degenerate.) Thus, C
intersects T S at least n − 1 times (not including its endpoints).
Note that the decomposition into Ai’s need not be unique.

A1

A2
A3A3

A1

b)

A2

T S T Sa)

Figure 8: (Color online) Figures (a) and (b) show two RoD-bridge decompo-
sitions of the same interval. In each figure, the thickest bold curves indicate
the three RoD-bridges in the decomposition, and the hashed curves are trivial
intervals ei. The first and last bridges A1 and A3 are the same for each decom-
position. The middle bridge A2, however, differs between (a) and (b).

The nonuniqueness of this decomposition is illustrated in
Fig. 8. The following refinement of Lemma 2 will allow us
to define itineraries for RoD-bridges in Sec. 6.

Lemma 3 (RoD-bridge decomposition under forward iteration).
Let B be a RoD-bridge of class b = [B] and M(b) = a1...an the
concise iterate of b.

(i) The iterate M(B) of B is the concatenation of a sequence
of RoD-bridges A1, ..., An, with [Ai] = a1, such that the intervals
between the Ai’s are trivial and odd. This decomposition is not
necessarily unique.

(ii) For any RoD-bridge A contained within M(B), there ex-
ists such a decomposition A1, ..., An of M(B) for which A = Ai

for some i.
(iii) Though the decomposition specified in (ii) is not gener-

ally unique for a given A, the position of A = Ai within such a
decomposition (i.e. the value of i) is unique.

Figure 8 provides a helpful illustration of this lemma. Pre-
suming the entire unstable interval in Fig. 8 to be the iterate
M(B) of some RoD-bridge B, statement (ii) is illustrated by the
fact that each of the four RoD-bridges is part of some RoD-
bridge decomposition, though there is no decomposition that
contains all four simultaneously. Statement (iii) is illustrated
by the fact that even though intervals A1 and A3 both appear in
two different decompositions, their positions within those de-
compositions (i.e. first and third) are the same.

4. Orderings of RoD-bridges

As discussed in Sec. 2.3, a RoD-bridge is endowed with both
a dynamical direction and, when viewed as a representative of
a homotopy class, a homotopy direction. We focus here on the
homotopy directions. For each homotopy class, it is convenient
to select a reference orientation. That is, for any (nontrivial)
bridge-classes b and b−1, we choose either b or b−1 (for sim-
plicity, say b) to define the reference orientation or reference
direction. 4 Recall that, in the figures, we denote the reference
direction by barbed arrows.

Consider now two RoD-bridges B and B′ whose initial end-
points (with respect to the reference orientation) lie on the same
branch of T S and which initially lie on the same side of T S .

4A RoD-bridge with trivial class does not have a well defined reference
direction.
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b)

c)

B2

B3

B1

B4

B B′

B ◭i B
′ B ◭f B′

B′ B

B1 ◭ B2 ◭ B3 ◭ B4

a)

Figure 9: (Color online) An illustration of the conventions defining the order-
ings Ji, J f , and J.

Then we write B Ji B′ if the initial point of B lies to the left
of the initial point of B′, where left and right are defined while
facing in the reference direction of B and B′, i.e. in the direc-
tion of the (barbed) arrows in Fig. 9a. We similarly define J f

for final endpoints (Fig. 9b). These two relations, Ji and J f ,
are (partial) orderings on the RoD-bridges. 5

In general, B Ji B′ need not imply B J f B′. However,
if [B] = [B′]±1, then: (i) B and B′ are necessarily ordered by
both Ji and J f ; and (ii) these orderings agree, i.e. B Ji B′ is
equivalent to B J f B′. In this case, we simply write B J B′.
Thus, J forms an order on all RoD-bridges within a bridge-
class (Fig. 9c).

Two RoD-bridges B and B′ satisfying [B] , [B′]±1 may or
may not be ordered by Ji or J f . However, if they are ordered
by Ji or J f , this ordering is a function only of their bridge-
classes, e.g. if B Ji B′, then A Ji A′ for any A and A′ satisfying
[A] = [B]±1 and [A′] = [B′]±1. Hence, the Ji and J f orderings
are inherited by the bridge-classes. Specifically, for two bridge-
classes b and b′, with b′ , b, we define b Ji b′ if B Ji B′ for
some B and B′ where b = [B] and b′ = [B′] and where b and b′

define the reference directions for B and B′. Note that the order
of bridge-classes depends on their orientations, i.e. b versus
b−1; reversing the directions of two bridge-classes reverses their
ordering, i.e. a Ji a′ implies (a′)−1 J f a−1.

Example: In Fig. 3c, the classes are ordered by

f −1 J f a−1
2 J f a2 J f a−1

1 J f a1 J f f , (5)

f −1 Ji a−1
1 Ji a1 Ji a−1

2 Ji a2 Ji f . (6)

5. Definition of partition rectangles

5.1. Basic construction
For each chaotic symbol b, we construct a topological rect-

angle Rb with two stable sides and two unstable sides. We first

5We typically omit the modifier “partial”.

Figure 10: (Color online) On the right, B and B′ (in thickest bold) are two RoD-
bridges forming a switchback similar to that in Fig. 7. Their preimages M−1(B)
and M−1(B′) lie respectively in the bridges A and A′ (in thickest bold) on the
left. The bridge A is a RoD-bridge, but A′, being trivial, is not. Furthermore,
there is no longer interval containing A′ that is a RoD-bridge. Thus, M−1(B′)
does not lie within a RoD-bridge.

d)

b

a)

b

a

c

b

a

c

b

b)

c)

Figure 11: (Color online) Four examples of partition rectangles. In each, the
rectangle is shaded and the unstable boundaries are in thickest bold.
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restrict our attention to those RoD-bridges B such that an ar-
bitrary preimage M−n(B) lies within some RoD-bridge A, for
any n > 0. We shall expand on this concept when we discuss
itineraries in Sec. 6, but for now we simply observe two facts.
First, a RoD-bridge B need not have a preimage M−1(B) that lies
within a RoD-bridge, as shown in Fig. 10. Second, Lemma 3
guarantees that there are an infinite number of RoD-bridges of
a given chaotic symbol b that do have preimages M−n(B) ly-
ing within a RoD-bridge. Thus, for the remainder of this paper,
we shall only consider those RoD-bridges having this preimage
property, and cases like B′ in Fig. 10 shall be ignored. With this
understanding, the two unstable sides of the partition rectangle
Rb are defined using the J ordering. In particular, one side is
the supremum of all RoD-bridges of class b with respect to the
J order, i.e. it is the upper limit of all RoD-bridges (satisfy-
ing the preimage property) with respect to this order. The other
unstable side of the rectangle is the infimum of the J order.
Collectively, we call the supremum and infimum the boundary
intervals of class b.

Figure 11a illustrates an example of the boundary intervals,
shown in bold, for a class b. The leftmost vertical line is the
infimum interval. Immediately to its left is a hole, implying
that there can be no unstable interval of class b farther to the
left. The left boundary interval is itself a bridge of class b. The
rightmost line is the supremum of b. This interval is also a
bridge, but it is not in class b, since there is a hole immediately
to its left. However, there is a sequence of bridges of class b
converging upon it, as shown schematically in the figure. The
point here is that the boundary intervals of a class b may or may
not themselves be of class b.

Figure 11b illustrates an example in which the lower bound-
ary interval, in bold, is again a bridge of class b, and the upper
boundary interval, also in bold, is not of class b. Furthermore,
the upper boundary is not a bridge or even a RoD-bridge, due
to the hole immediately below it. Thus, we see that a boundary
interval need not be a RoD-bridge.

Figure 11c illustrates an example showing three different
bridge-classes, which surround a central unstable fixed point.
This point is not an anchor and its three unstable branches are
not branches of the trellis. Nevertheless, its branches form
boundary intervals for the three classes. Focusing on class a, its
right boundary is a bridge with class a. However, its left bound-
ary consists of the two bold intervals connected to the central
fixed point. Thus, we see that a boundary interval need not be an
unstable interval of the tangle WU . An unstable point with three
branches is not structurally stable, and under a small perturba-
tion, it bifurcates into a structure like that shown in Fig. 11d.
Here, the vertices of the central triangle are periodic points, and
the edges connecting them are very nearly separatrices.

In summary, though the unstable boundary intervals of a
class b are the limits of RoD-bridges of class b, the intervals
themselves need not have class b and need not be bridges, RoD-
bridges, or even intervals of WU .

Finally, the two stable boundaries of a partition rectangle are
simply those stable intervals of T S connecting the four end-
points of the unstable intervals.

5.2. Refined symbols
Suppose the forward iterate of a class a contains two or more

copies of a class d (or its inverse), e.g. M(a) = ...d...d−1....
Such multiplicity creates obvious ambiguities in the symbolic
itineraries. To resolve such ambiguities, we attach a unique in-
dex to each copy of d in the following geometrically meaningful
way.

The rectangles in Fig. 12a illustrate the equation M(a) =

...d...d−1.... Here M folds the rectangle Ra into a horseshoe
that intersects Rd twice, forming two smaller rectangles R(i)

d and
R(ii)

d . Note that we use the innermost fold (shown in bold) of the
boundary of M(Ra) to define the subrectangles. The new rectan-
gle labels suggest the refined equation M(a) = ...d(i)...d(ii)−1....
Despite this refinement a bridge lying within either R(i)

d or R(ii)
d

still has homotopy class d±1.
Figure 12b illustrates a more complex example in which two

symbols a and b each map twice to d. We again refine Rd into
two smaller rectangles. We again use the innermost of the four
folded boundary curves (in bold) to define the subrectangles.
Finally, Fig. 12c illustrates even greater complexity, in which
four rectangles map across Rd. In this case, there are two inner-
most folds (in bold), which define three subrectangles.

In general, innermost folds are constructed as follows. First,
we define a fold as a pair of RoD-bridges D and D′ such that
both lie within M(A) for some RoD-bridge A and both have the
same homotopy class d = [D]± = [D′]±, ignoring orientation.
Considering all such folds for a given d (and for all possible
A’s), we say that a pair D and D′ forms an innermost fold if
there is no other fold lying between them (as defined by the
ordering of their endpoints along T S ) 6. These innermost folds
are then the cuts used to define the subrectangles R(k)

d .
Once we have defined the subrectangles R(k)

d , we can dec-
orate each appearance of d in the concise dynamical equations
with a superscript “(k)” to distinguish which subrectangle it lies
within. We refer to d(k) as a refined symbol. For the remainder
of this paper, we assume that all symbols have been refined,
and the term symbol shall thus implicitly mean a refined sym-
bol. With this refinement, a given chaotic symbol clearly never
appears twice in the concise iterate of any one symbol.

Example: As previously determined, the concise dy-
namics for the active classes in Fig. 3 is

M(a1) = f −1u0a2u−1
0 f , (7)

M(a2) = f −1u−1
0 f , (8)

M( f ) = a−1
1 u−1

0 f . (9)

The class f is repeated in the iterates of both a1 and
a2. To avoid this repetition, we consider Fig. 13a,
which illustrates the topology of M(a1) and M(a2).
Fig. 13b illustrates the same topology, but distorted
to straighten the intervals of class f . These inter-
vals are labelled I, II, III, and IV. From this figure,

6An innermost fold may also arise as the lower limit of nested folds, con-
sisting thus of limits of RoD-bridges, as discussed in Sec. 5.1.
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b)

c)

d

M(Ra)

Rda Ra

Ra

a

M(Ra)

M(Rb)

Rb

b

d
Rd

a)

Rd

Figure 12: (Color online) Illustrations of subdividing a partition rectangle Rd
to enforce uniqueness in forward iteration.

M(a2)

M(a1)

f
(i) (ii) (iii)

III IVIII

M(a1)

M(a2)

f

IV
III

II

(a)

I

(b)

Figure 13: (Color online) Figure (a) is a qualitative illustration of M(a1) and
M(a2) shown in Figs. 3d and 3e. Figure (b) distorts (a) so that the f bridges are
straightened out.

it is obvious that the pair I and II and the pair III and
IV form inner folds, which give us three subrectan-
gles, labelled (i), (ii), and (iii). The concise dynamics
for a1 and a2 is then refined by the top equations in
Fig. 14. Furthermore, though we now distinguish the
refined symbols f (i), f (ii), and f (iii), their iterates are
all identical, as shown at the top of Fig. 14, a fact that
is true in general for refined symbols.

Note that each RoD-bridge not only has a homotopy class,
but it also can be assigned a well defined (refined) symbol. A
RoD-bridge B is assigned the (refined) symbol b if B can be
homotopically distorted into a curve lying entirely within Rb

without moving the endpoints of B.
Note that the orders defined in Sec. 4 extend naturally to the

refined symbols, and hence the basic construction of partition
rectangles in Sec. 5.1 applies to the refined dynamics. That
is, the unstable boundary intervals of Rb, where b is a (refined)
symbol, are the infimum and supremum of all RoD-bridges with
symbol b.

An important point of this construction is that the partition
rectangles are compatible with the original homotopic lobe dy-
namics in the following sense.

Theorem 1. For every bi-infinite sequence ...s−1s0s1... of
chaotic symbols that is allowed by the homotopic lobe dynam-
ics, there is at least one orbit xk = Mk(x0) with xk ∈ Rsk for all
k. 7

7This theorem follows directly from Lemma 3.
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Concise dynamics of active symbols

M(a1) = f (ii)−1u0a2u
−1
0 f (i),

M(a2) = f (iii)−1u−1
0 f (ii),

M(f (i)) = M(f (ii)) = M(f (iii)) = M(f (k)) = a−1
1 u−1

0 f (i).

Transition graph (active symbols only)

−
−

f (iii)f (ii)f (i)

a1 a2+

+ +

+
+

+

−

−−

◭f - and ◭i-ordering of symbols (smallest to largest)

◭f : f (i)−1 f (ii)−1 f (iii)−1 a−1
2 a2 a−1

1 a1 f (iii) f (ii) f (i),

◭i: f (i)−1 f (ii)−1 f (iii)−1 a−1
1 a1 a−1

2 a2 f (iii) f (ii) f (i).

Ordering of two-symbol blocks

a1f
(i) ◭ f (iii)f (i) ◭ f (ii)f (i) ◭ f (i)f (i)

a2f
(ii) ◭ a1f

(ii)

f (i)a1 ◭ f (ii)a1 ◭ f (iii)a1

Figure 14: Summary of symbolic dynamics for the example in Fig. 3 using the
refinement of f in Fig. 13.

Ra

B

RaRb R′
b

B′

(a) (b)

Figure 15: (Color online) (a) An example of rectangles intersecting with
nonzero area. (b) The intersection between Ra and Rb shown in part (a) can
be removed by trimming Rb to R′b.

In general, the partition is not a generating partition, which
would yield a topological equivalence between the symbolic
dynamics and the map dynamics. However, the symbolic dy-
namics can be made arbitrarily accurate, as discussed in Secs. 9
and 10.

Finally, we note that the partition rectangles defined above
can intersect. Such intersections might only occur at the rect-
angle boundaries, as for Ra, Rb, and Rc in Figs. 11c and 11d.
Such boundary intersections commonly occur when partition-
ing, even for the simple case of unimodal maps. However, the
intersections of partition rectangles defined above can poten-
tially be more significant, as illustrated in Fig. 15a, where the
unstable boundary B (in bold) of Rb is a RoD-bridge that in-
tersects the interior of Ra. Since this intersection is not topo-
logically forced, however, B can be distorted into the curve B′

in Fig. 15b (in bold) by removing the dashed trivial interval.
This creates a trimmed partition element R′b. This trimming
can be carried out in general, and in such a manner that the re-
sulting partition elements only intersect at their boundaries and
that they still satisfy Theorem 1. For the remainder of this pa-
per, we utilize the partition rectangles as originally formulated
above, recognizing that these could be trimmed if so desired.

6. RoD-Bridge itineraries

We demonstrate here how RoD-bridges can be labelled with
symbolic itineraries. In Secs. 7 and 8 we shall explain how
to find such itineraries for the boundary intervals of a partition
rectangle.

6.1. Initial construction
We consider a RoD-bridge B0, which, as we have been

assuming, satisfies the preimage property of Sec. 5.1, i.e.
M−n(B0) lies within a RoD-bridge for all n > 0. There is
thus a unique infinite sequence of RoD-bridges ..., B−2, B−1, B0,
such that Bi+1 ⊂ M(Bi). We call the RoD-bridges Bi the an-
cestors of B0. Every ancestry sequence ..., B−2, B−1, B0 has an
infinite periodic beginning. To see this, consider an anchor
bridge A0 = T U[z,p], z ∈ P, p ∈ N. Each ancestor Ai of A0
must have one periodic endpoint in P, and hence must itself
be an anchor bridge. The ancestry sequence ..., A−2, A−1, A0
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must therefore be periodic with period equal to the branch
period. Since the anchor bridges generate all of WU , an ar-
bitrary RoD-bridge B0 must have some anchor bridge A0 in
its ancestry, and hence going back in time, the ancestry se-
quence ..., B−2, B−1, B0 must eventually be periodic, with form
..., A−2, A−1, A0, ..., B−2, B−1, B0. Thus, only a finite number of
ancestors of B0 is truly important.

Since each ancestor Bi has a symbol bi, we can associate an
infinite itinerary of symbols ...b−2b−1b0 to a RoD-bridge B0.
(The symbols bi are assumed to be refined according to the
discussion in Sec. 5.2.) The symbol ai of an anchor bridge
Ai is called an anchor symbol, and the periodic ancestry se-
quence ..., A−2, A−1, A0 of an anchor bridge A0 generates a peri-
odic itinerary of anchor symbols ...a−2a−1a0. There are clearly
a finite number of such anchor itineraries, one for each unsta-
ble branch of the trellis. Since the ancestry sequence of any
RoD-bridge B0 begins with anchor bridges, the itinerary of B0
must begin with an anchor itinerary, i.e. ...a−2a−1a0...b−2b−1b0.

Consider now an allowable itinerary b−n...b−2b−1b0 of finite
length and a RoD-bridge B−n with symbol b−n. Lemma 3, part
(i), gaurantees the existence of a sequence of RoD-bridges B−n,
... B−2, B−1, B0, with Bi+1 ⊂ M(Bi) and with bi the symbol of
Bi.

Consider now an allowable itinerary ...a−2a−1a0...b−2b−1b0 of
infinite length and beginning with an anchor itinerary. Consid-
ering only the finite itinerary a0...b−2b−1b0 and the (unique) an-
chor bridge A0 with symbol a0, our preceding assertion shows
that there is a sequence A0, ... B−2, B−1, B0 of RoD-bridges with
itinerary a0...b−2b−1b0. Hence, given an allowable itinerary
...a−2a−1a0...b−2b−1b0, beginning with an anchor itinerary, there
exists a RoD-bridge B0 with that itinerary. Note, however, that
since the decomposition in Lemma 3 is not necessarily unique,
B0 need not be uniquely determined by its itinerary.

6.2. Itineraries with chaotic symbols only

Note that the symbols used in the itineraries above may or
may not be chaotic, i.e. in the chaotic component of the dy-
namics. We show here how we can restrict our attention to
itineraries consisting only of chaotic symbols.

Recalling Sec. 5.1, the unstable boundary intervals of a par-
tition rectangle Rb are the supremum and infimum of all RoD-
bridges with symbol b (and satisfying the preimage condition).
As previously noted, these boundary intervals need not them-
selves be RoD-bridges with symbol b; they are simply the lim-
its of such RoD-bridges. We shall thus introduce the shorthand
limRoD-bridge (“lim” for limit) for an interval B that is the
limit of a sequence of RoD-bridges Bi, with Bi , B, converg-
ing on either the right (positive) side or left (negative) side of
B, as defined by the dynamical orientation of B. A limRoD-
bridge could have either a left-converging sequence, a right-
converging sequence, or both. As already noted, a limRoD-
bridge need not be a RoD-bridge (as in Fig. 11b, c, and d;
see also Fig. 16.) Furthermore, a RoD-bridge need not be a
limRoD-bridge (since Bi , B).

For a limRoD-bridge B with a right-converging sequence Bi,
we define the homotopy class [B]+ as the class limi→∞[Bi].

z

a

q

p

Figure 16: (Color online) The thickest bold interval A = T U [z,p] is a limRoD-
bridge, with a sequence of three bridges shown converging upon it. These
bridges have symbol a, which implies [A]+ = a. Since one of the endpoints
of A is an anchor z ∈ P, A is an anchor limRoD-bridge and a is an anchor
symbol. Note that the shorter interval T U [z,q] is an anchor bridge, but is not
a limRoD-bridge; T U [q,p] is a bridge, but neither a limRoD-bridge nor an
anchor bridge.

Equivalently, [B]+ = [B+ε], where B+ε is a RoD-bridge that
is an arbitrarily small perturbation of B to the right. An analo-
gous definition holds for the class [B]−. Furthermore, we shall
assume for the remainder of the paper that all symbols [B]± are
refined as in Sec. 5.2.

Analogous to prior definitions, an anchor limRoD-bridge is
a limRoD-bridge A = T U[z,p], with z ∈ P, p ∈ T S ∩ T U .
Note that an anchor limRoD-bridge need not be an anchor RoD-
bridge (see Fig. 16), and so we extend the term anchor symbol
to include all symbols [A]± of anchor limRoD-bridges.

We now adapt the results in Sec. 6.1 to limRoD-bridges. As
before we consider only those limRoD-bridges B satisfying the
preimage condition, i.e. that the preimage of B lies within a
limRoD-bridge. Thus, for a limRoD-bridge B0, we can con-
struct a sequence of ancestors ..., B−2, B−1, B0, such that Bi+1 ⊂

M(Bi) and where each Bi is a limRoD-bridge. As before, such
sequences begin with a periodic sequence of anchor limRoD-
bridges ..., A−2, A−1, A0. Suppose b0 = [B0]+, then the ancestry
sequence of B0 gives rise to an itinerary ...a−2a−1a0...b−2b−1b0
that begins with an anchor itinerary and where bi = [Bi]+; the
analogous result holds for b0 = [B0]−. Furthermore, it is possi-
ble for a limRoD-bridge to have two such itineraries, one con-
structed from bi = [Bi]+ and one from bi = [Bi]−. Finally, so
long as b0 is a chaotic symbol, the entire itinerary bi consists of
chaotic symbols.

To summarize, every limRoD-bridge B0 for which b0 =

[B0]± is chaotic has an itinerary ...a−2a−1a0...b−2b−1b0 consist-
ing only of chaotic symbols bi = [Bi]± and beginning with an
anchor itinerary.

The converse is also true. For every allowable itinerary
...a−2a−1a0...b−2b−1b0 of chaotic symbols that begins with an
anchor itinerary, there exists a limRoD-bridge B0 with that
itinerary. This follows from Lemma 3, adapted to limRoD-
bridges.
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7. Computing orderings from itineraries

In Sec. 4 we defined the two RoD-bridge orderings Ji and
J f , and in Sec. 6 we discussed how RoD-bridges could be la-
beled by symbolic itineraries. Here we demonstrate how the
orderings of RoD-bridges can be determined by their itineraries
alone.

Consider two itineraries ...s−1s0 and ...s′
−1s′0. If these

itineraries label unique RoD-bridges B and B′, then the Ji and
J f orderings can be determined from the itineraries alone. We
thus adopt the notation ...s−1s0 J ...s′

−1s′0 to mean B J B′, and
similarly for Ji and J f . If s0 , s′0, then the RoD-bridges B and
B′ have different symbols, and their orderings, if well defined,
are determined by the symbols s0 and s′0 alone, as previously
observed in Sec. 4. The ordering between different symbols
is readily extracted from the geometry of the initial trellis. In
the following, we thus assume that for any two symbols s0 and
s′0, with s0 , s′0, we know whether s0 Ji s′0 or s′0 Ji s0, and
similarly for J f .

We now concentrate on the case s0 = s′0, i.e. the case in
which the RoD-bridges being compared have the same symbol.
In this case the two orders Ji and J f reduce to the single or-
der J. We initially focus on only the last two symbols in the
itineraries, s−1s0 and s′

−1s0, and assume s−1 , s′
−1. We define

the parity π(s−1s0) of a two-symbol block by whether s0 or s−1
0

appears in the iterate of s−1, i.e.

π(s−1s0) =

+1 if M(s−1) = ...s0...,

−1 if M(s−1) = ...s−1
0 ... .

(10)

Thus, defining ε = π(s−1s0) and ε′ = π(s′
−1s0), we have

M(sε−1) = ...s0..., (11)

M(s′ ε
′

−1 ) = ...s0.... (12)

We then introduce the following notation for the symbols im-
mediately before and after s0 in the iterate

M(sε−1) = ...ab1...b js0c1...ckd..., (13)

M(s′ ε
′

−1 ) = ...a′b1...b js0c1...ckd′..., (14)

where the blocks b1...b j and c1...ck are common to both iterates,
and where a , a′ and d , d′. Thus, a and a′ are the closest
distinct symbols that precede s0, and d and d′ are the closest
distinct symbols that follow s0. Note that if all the symbols
that precede s0 were equal in M(sε

−1) and M(s′ ε
′

−1 ), then a and a′

would fail to exist. Similarly, d and d′ would fail to exist if all
the symbols that follow s0 were equal.

Assume a and a′ exist, and consider the homotopy classes
ab1...b js0 and a′b1...b js0 (Fig. 17). Since a and a′ are distinct
with final endpoints on the same stable branch, they are ordered
by J f . (In Fig. 17, a J f a′.) The order of a and a′ is then the
same as that of s−1s0 and s′

−1s0, i.e. a J f a′ ⇔ s−1s0 J s′
−1s0.

Assume now that a and a′ fail to exist. Then, since M pre-
serves orientation, s−1s0 and s′

−1s0 acquire the initial ordering
of sε

−1 and s′ ε
′

−1 , i.e. sε
−1 Ji s′ ε

′

−1 ⇔ s−1s0 J s′
−1s0. In summary

s−1s0 J s′−1s0 ⇔

a J f a′ if a and a′ exist,
sε
−1 Ji s′ ε

′

−1 otherwise.
(15)

T S

T S

T Ss0

s0

b1...bjb1...bj

a

a′

Figure 17: (Color online) An illustration of the notation in Eqs. (13) and (14).

This result can be neatly restated if we define a new notational
use of J. For two symbol strings S and S ′,

J(S , S ′) =

+1 if S J S ′,
−1 if S I S ′.

(16)

Similar usage applies to Ji(S , S ′) and J f (S , S ′). Then Eq. (15)
is equivalent to

J(s−1s0, s′−1s0) =

J f (a, a′) if a and a′ exist,
Ji(sε

−1, s
′ ε′

−1 ) otherwise.
(17)

Similarly, we can express the criterion in terms of the d and d′

classes in Eqs. (13) and (14) instead.

J(s−1s0, s′−1s0) =

Ji(d, d′) if d and d′ exist,
J f (sε

−1, s
′ ε′

−1 ) otherwise.
(18)

Example: In Fig. 3, there are five active symbols a1,
a2, f (i), f (ii), and f (iii), accounting for the refinement
of f in Fig. 13. Updating (5) and (6) for the refine-
ment of f , the J f - and Ji-orderings are recorded
in Fig. 14. The top of Fig. 14 contains the concise
dynamics, from which we extract the following two-
symbol blocks s−1s0 and parities π(s−1s0).

π = +1: a1a2 a1 f (i) a2 f (ii) f (k) f (i)

π = −1: a1 f (ii) a2 f (iii) f (k)a1
(19)

where f (k) can be either f (i), f (ii), or f (iii). These
parities label the edges in the transition graph of
Fig. 14. We next compute the J-order of all two-
symbol blocks s−1s0 and s′

−1s0. Starting with a1 f (i)

and f (iii) f (i), we note

M(a1) = f (ii)−1u0a2(u−1
0 f (i)),

M( f (iii)) = a−1
1 (u−1

0 f (i)). (20)

which should be compared to Eqs. (13) and (14),
with a = a2 and a′ = a−1

1 . Since a2 J f a−1
1 [see

J f -ordering in Fig. 14], Eq. (15) implies a1 f (i) J
f (iii) f (i). Continuing with f (i) f (i) and f (ii) f (i), since
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M( f (i)) = M( f (ii)), a and a′ in Eqs. (13) and (14)
do not exist, so that we must use the second case in
Eq. (15). Then, since f (ii) Ji f (i) [see Ji-ordering
in Fig. 14], we find f (ii) f (i) J f (i) f (i). In a similar
manner, we can complete the orderings for all two-
symbol blocks ending in f (i), as recorded at the bot-
tom of Fig. 14.

Moving to itineraries ending in f (ii), we consider
a1 f (ii) and a2 f (ii), for which

M(a−1
1 ) = f (i)−1u0a−1

2 (u−1
0 f (ii)),

M(a2) = f (iii)−1(u−1
0 f (ii)). (21)

Again applying Eq. (15), since f (iii)−1 J f a−1
2 , we

have a2 f (ii) J a1 f (ii), as recorded in Fig. 14.

Finally, considering itineraries ending in a1, we
have f (i)a1, f (ii)a1, and f (iii)a1. Using the fact that
M( f (i)−1) = M( f (ii)−1) = M( f (iii)−1) = f (i)−1u0a1
and that f (i)−1 Ji f (ii)−1 Ji f (iii)−1, the second case
of Eq. (15) implies f (i)a1 J f (ii)a1 J f (iii)a1, as
recorded in Fig. 14.

Next consider two three-symbol blocks of the form s−2s−1s0
and s′

−2s−1s0, where s−2 , s′
−2. Then M(s−1) has the form

M(s−1) = ...sε0..., (22)

with ε = π(s−1s0). If ε is positive, then the order of s−2s−1s0
and s′

−2s−1s0 is simply the order of s−2s−1 and s′
−2s−1, i.e.

J(s−2s−1s0, s′−2s−1s0) =J(s−2s−1, s′−2s−1), otherwise the order
is reversed, i.e. J(s−2s−1s0, s′−2s−1s0) = − J(s−2s−1, s′−2s−1).
These two cases can be summarized as

J(s−2s−1s0, s′−2s−1s0) =J(s−2s−1, s′−2s−1)π(s−1s0). (23)

For longer blocks, parity is defined by multiplying the parity
for each transition, i.e. π(s−n...s0) =

∏−1
i=−n π(sisi+1). Equation

(23) for three-symbol blocks now generalizes to arbitrary num-
bers of symbols

J(...s−ns−n+1...s−1s0, ...s′−ns−n+1...s−1s0) =

J(s−ns−n+1, s′−ns−n+1)π(s−n+1...s0), (24)

where s−n and s′−n is the first pair of symbols, moving right to
left, which are not equal. Equation (24) shows that the ordering
of two itineraries reduces to the ordering of two-symbol blocks.

8. Constructing the boundary intervals

To find the two boundary intervals of a given chaotic sym-
bol s, we first find their itineraries. These are the maximum
and minimum itineraries, with respect to J, having the form
...s−2s−1s, where the si are chaotic symbols. (All symbols
are assumed chaotic in this section.) The results of Sec. 7
make it straightforward to determine these two itineraries. Sup-
pose we wish to determine the maximum itinerary ...s−2s−1s.
Then s−1 is simply that symbol which maximizes the two-
symbol sequences s′s, i.e. s′s J s−1s, or equivalently J

terminal symbol maximum minimum
a1 a2 f (iii)a1 f (i)a1

a2 f (iii)a1a2 f (i)a1a2

f (i) f (i) f (i)a1 f (i)

f (ii) f (i)a1 f (ii) f (i)a1a2 f (ii)

f (iii) f (i)a1a2 f (iii) a1a2 f (iii)

Table 1: Extreme itineraries for symbolic dynamics in Fig. 14.

(s′s, s−1s) = 1, for all allowed symbols s′ , s−1. Working
backwards, if π(s−1s) = 1, Eq. (23) implies that the next sym-
bol s−2 is the symbol that maximizes two-symbol itineraries
of the form s′s−1. If π(s−1s) = −1, however, s−2 is the sym-
bol that minimizes such itineraries. Both cases are summarized
by the requirement that s−2 satisfy J(s′s−1, s−2s−1) = π(s−1s)
for all allowed symbols s′ , s−2. In this manner, we work
recursively backwards, at each step choosing s−k to satisfy
J (s′s−k+1, s−k s−k+1) = π(s−k+1...s−1s) for all allowed s′ , s−k,
thereby generating the entire maximum itinerary. Thus, we
only need to know the parity and ordering of all two-symbol
blocks to find the maximum itinerary ending in s. The algo-
rithm for the minimum itinerary is exactly the same, except at
each step we choose s−k according to J(s′s−k+1, s−k s−k+1) =

−π(s−k+1...s−1s) for all allowed s′ , s−k.

In principle, the extreme itineraries are infinitely long. How-
ever, since there are a finite number of chaotic symbols, an ex-
treme itinerary ...s−2s−1s constructed recursively must eventu-
ally become periodic as one moves to the left, i.e. an extreme
itinerary has the form a−p+1...a−1a0s−n...s−1s, beginning with
the sequence a−p+1...a−1a0 = ...(a−p+1...a−1a0)(a−p+1...a−1a0)
of period p. (Here, an overbar denotes an infinite repetition.)
If this periodic sequence is one of the anchor sequences dis-
cussed in Sec. 6, the corresponding unstable interval (which is
a limRoD-bridge) lies within the unstable manifold of the tan-
gle WU . However, the periodic sequence need not be an anchor
sequence, in which case the corresponding interval lies within
the unstable manifold of a periodic point that is not in the orig-
inal set of anchor points P, as illustrated previously in Fig. 11c
and Fig. 11d.

Example: For the example in Fig. 3, we have
previously computed the parity and ordering of all
two-symbol itineraries (Fig. 14). We now work
through a few examples to show how to compute
maximum and minimum itineraries.

maximum itinerary ending in a1: We refer to the ta-
ble below which shows each new symbol being
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Figure 19: (Color online) The top row shows three trellises, all computed from the same map used in Fig. 3, with 19a being the same trellis as Fig. 3a and 19c
being essentially the same as Fig. 20a. The lengths of the manifolds and the number of branches increases from a to c to e. The bottom row shows the partition
corresponding to each trellis, with colors assigned randomly to each partition element. The partitions resolve the dynamics in the vicinity of the stable zone with
increasing accuracy. The number of partition elements in b, d, and f are 5, 13, and 80, respectively.

minmax

min

min min max

max min

max

max

a1

a2

a1

f (i) a2 f (ii)

f (iii) f (ii)

f (i) a1a2f (iii)

Figure 18: Extreme itinerary tree graphically organizing the itineraries in Ta-
ble 1.

added.

Step Constructed Itinerary Total Parity π
1

2

3

f (iii) a1
−1

a2 f (iii) a1
−1 −1

a1 a2 f (iii) a1
+1 −1 −1

−1

+1

+1

final itinerary = a2 f (iii)a1

Of all two-symbol itineraries ending in a1, f (iii)a1
is the greatest [See bottom of Fig. 14], so the top
row of the table begins with f (iii)a1. Immediately
below f (iii)a1, we place its parity π( f (iii)a1) = −1.
The right hand column lists the total parity of the
itinerary constructed thus far, initially just -1. Since
this total parity is negative, the symbol added at step
2 is the one that makes the smallest two-symbol
block ending in f (iii). Since there is only one symbol,
a2, that maps to f (iii), we add a2 on the left-hand
side. We again record the two-symbol parities below
each pair of symbols. Since π(a2 f (iii)) is again
negative, the total parity, recorded on the right, is
now π(a2 f (iii)a1) = +1. With this positive parity, the
next symbol we seek is the one forming the largest
two-symbol itinerary ending in a2, which is a1a2,
so a1 is added on the left. We have thus returned to
the symbol a1, with positive total parity, and hence
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Figure 20: (Color online) (a) A nested trellis for the same map used in Fig. 3. The inner trellis is attached to the fixed point y. (b) A qualitative depiction of Fig. 20a,
which shows the topological structure more clearly. There are three sequences of holes depicted by exes, pluses, and circles, and labeled by their iterate number. (c)
An illustration of the bridge classes, showing how each winds around the holes.

the pattern must repeat, with the complete itinerary
being ...(a2 f (iii)a1)(a2 f (iii)a1) = a2 f (iii)a1.

minimum itinerary ending in a1: We again outline the
steps.

Step Constructed Itinerary Total Parity π
1

2

f (i) a1
−1

f (i) f (i) a1
+1 −1

−1

−1

final itinerary = f (i)a1

Since we are trying to minimize the itinerary, the
symbol added at step 1 minimizes two-symbol blocks
ending in a1. As the total parity at step 1 is negative,
at step two we look for the symbol which maximizes
two-symbol blocks ending in f (i), which is f (i). As
total parity at step 2 remains negative, f (i) is repeated
forever.

The extreme itineraries for the other symbols are
summarized in Table 1. Notice that all of these
itineraries begin with one of two periodic sequences
a1a2 f (iii) or f (i). The latter is the itinerary of the fixed
point z in Fig. 3. The former is the itinerary of a
period-three orbit, which lies within the resonance
zone and is not an anchor point of the trellis. This
orbit is shown in Fig. 19b by the three dots that lie on
the partition boundaries for a1, a2, and f (iii).

From the algorithm for constructing the extreme itineraries,
one can immediately see that if a−p+1...a−1a0s−n...s−1s is an ex-
treme itinerary for s, then a−p+1...a−1a0s−n...s−1 is an extreme
itinerary for s−1 and so forth. This also means that in the pro-
cess of computing the extreme itinerary for s one also computes
one of the two extreme itineraries for all preceding symbols s−k.
(In terms of the partition, this means that the unstable boundary
of Rs−k maps forward across the unstable boundary of Rs−k+1 .)

We can graphically illustrate the relationship between the ex-
treme itineraries in a tree, as shown in Fig. 18. The top nodes
contain the periodic starting sequences. Moving down the tree
one adds the symbol within each node to the right end of the
sequence. In this manner, all extreme itineraries are recovered.
Each node also has a “max” or “min” label indicating whether
the itinerary ending in that node is a maximum or minimum.

Suppose now that we have determined the itinerary of a
boundary interval a−p+1...a−1a0s−n...s−1s. We next wish to com-
pute the actual boundary interval B with this itinerary. This
problem reduces to that of finding the limRoD-bridge A0 with
itinerary a−p+1...a−1a0, since, as discussed in Sec. 6.2, once
we know A0, we can propagate it forward to find the interval
B. If a−p+1...a−1a0 is an anchor sequence, then A0 is simply
an anchor limRoD-bridge within the trellis T U . However, if
a−p+1...a−1a0 is not an anchor sequence, then A0 is an unstable
interval attached to a periodic orbit that is not in the set of an-
chor points P. In this case, we can approximate A0 arbitrarily
accurately with an interval of WU . To construct an approximat-
ing interval to A0, first consider any finite itinerary of the form
a′...(a−p+1...a−1a0)k. Here the itinerary ends in k repetitions of
a−p+1...a−1a0 and begins with the symbol a′, which is taken to
be an anchor symbol. Since this itinerary begins with an an-
chor symbol, the corresponding anchor limRoD-bridge A′ lies
within the trellis T U , and is thus easy to identify. It is straight-
forward then to iterate A′ forward to construct a limRoD-bridge
Ak

0 with the itinerary a′...(a−p+1...a−1a0)k. The approximant Ak
0

converges to A0 exponentially in k. Once this approximant is
found to the desired accuracy, it can be used to construct the
desired boundary interval B.

Finally, when computing the interval for a given extreme
itinerary, one may find more than one limRoD-bridge with that
itinerary, as discussed in Sec. 6.2. Clearly in this case, the
boundary interval is the most extreme of these limRoD-bridges
with respect to the J-order.

Example: For the example introduced in Fig. 3,
Fig. 19b plots the five partition rectangles, whose ex-
treme itineraries are in Table 1. Notice that for the
symbols a1, a2, and f (iii), the partition rectangles are
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drawn in toward the central stable region, where they
are starting to form extended and bent “fingers”. This
suggests that the stable region is exerting an influ-
ence on the structure of the surrounding chaotic sea,
and that this influence has not been fully incorporated
into the symbolic dynamics at this stage of resolution.
That is, the partition in Fig. 19b has not fully resolved
the topological dynamics in the vicinity of the stable
region. We shall improve this situation in Sec. 9.

9. Resolving the partition in the vicinity of stable islands

The fingering evident in Fig. 19b is a reflection of the fact
that the trellis in Fig. 19a (or equivalently Fig. 3a) has not ac-
curately captured the topology of the dynamics in the vicinity
of the stable zone. (For example, the topological entropy com-
puted from the symbolic dynamics in Fig. 14 is less than the true
topological entropy of the map.) As pointed out in Ref. [17],
we can more accurately describe the topological dynamics in
the vicinity of stable islands by including additional homoclinic
or heteroclinic tangles attached to unstable periodic orbits near
the islands. In the present example, we follow Ref. [17] and
expand the trellis T to include a second homoclinic tangle at-
tached to the fixed point y and surrounding the stable zone, as
shown in Fig. 20a. For clarity, Fig. 20b includes a schematic
drawing of the expanded trellis. The homotopic lobe dynamics
for this trellis was discussed in detail in Ref. [17], and here we
summarize the concise dynamics in the top set of equations of
Fig. 21. Note that these equations expand slightly on the results
of Ref. [17] by incorporating the symbol refinement discussed
in Sec. 5.2. (The dedicated reader would benefit from con-
firming these refined equations.) The refined equations yield
the transition graph in Fig. 21, where each directed edge is la-
beled by the parity of the transition. Figure 20c illustrates a
representative curve from each homotopy class. From this il-
lustration, the Ji- and J f -ordering of individual symbols can
be read off, as recorded in Fig. 21. The orderings of two-symbol
blocks in Fig. 21 follows from the technique in Sec. 7, using the
concise dynamics and the orderings of individual symbols in
Fig. 21. Finally, the method of Sec. 8 uses the ordering of two-
symbol blocks to produce the extreme itineraries in Table 2,
which are organized into the tree in Fig. 22. From these ex-
treme itineraries, we can compute the partition elements them-
selves, as shown in Fig. 19d. This partition, with 13 elements,
is clearly an improvement over the previous partition to its left,
with only 5.

The partition can be further refined if we use a trellis T with
a higher density of unstable manifold and which penetrates
the inner region of the chaotic sea closer to the stable zone,
as shown in Fig. 19e. The corresponding partition, shown in
Fig. 19f, exhibits a much higher degree of refinement, with 80
elements, especially in the vicinity of the stable zone. At this
point, the symbolic dynamics was complicated enough that the
algorithms to extract the homotopic lobe dynamics and to ul-
timately compute the extreme itineraries were implemented in
Matlab, along with the algorithms to numerically compute the

terminal symbol maximum minimum
a1 f a1 f a1 f a1

b f a1d(ii)
5 d(ii)

3 d2gb gb
g g f a1d(ii)

5 d(ii)
3 d2g

d4 f a1 f a1a2d(ii)
1 d4 f a1d(i)

1 d4

f f f a1 f
a2 f a1 f a1a2 f a1a2

d(i)
1 f a1a2d(i)

1 f a1d(i)
1

d(ii)
1 f a1 f a1a2d(ii)

1 f a1a2d(ii)
1

d(i)
3 gbd(i)

3 f a1d(i)
1 d4d(i)

3
d(ii)

3 f a1d(ii)
5 d(ii)

3 gbd(ii)
3

d(i)
5 f a1a2d(i)

5 f a1d(i)
1 d4d(i)

3 d2d(i)
5

d(ii)
5 f a1d(ii)

5 f a1a2d(ii)
5

d2 f a1d(ii)
5 d(ii)

3 d2 f a1d(i)
1 d4d(i)

3 d2

Table 2: Extreme itineraries for symbolic dynamics in Fig. 21.

partition boundaries themselves. 8

10. Discussion

This work demonstrates how a trellis, i.e. finite-length in-
tervals of stable and unstable manifolds, can be used to con-
struct a partition of a chaotic phase space, even when the phase
space contains islands of stability that substantially influence
the dynamics in their vicinity. The partition is constructed from
an underlying Markov shift and has the feature that every al-
lowed symbol sequence of the shift has a phase-space trajectory
with that itinerary. Furthermore, the level of refinement of the
partition, and the accuracy of the shift, depend on the number,
length, and density of the stable and unstable intervals used in
its construction. Figure 19 illustrates how increasing the density
of unstable intervals improves the resolution of the partition.

A key remaining issue is the strategy for selecting and re-
fining the initial trellis itself. We discuss a few approaches.
As emphasized previously, to construct the partition, one often
must use intervals that are not contained in the original trellis.
In the process of computing these intervals, one often finds that
they have additional structure (i.e. heteroclinic intersections)
that were not predicted by the topology of the original trellis.
(This is the reason for using RoD-bridges in the text.) A nat-
ural strategy would then be to expand the original trellis with
the additional unstable intervals discovered upon construction
of the partition. From this expanded trellis, a new refined par-
tition could be computed. This new partition may contain ad-
ditional structure as well, and the refinement could be repeated.
This process could be repeated recursively until either there is
no new structure or until any new structure is below some tol-
erance, characterized, for example, as being smaller than some
threshold area in phase space. Though potentially useful, this

8Implementation details will be provided elsewhere. Interested parties may
contact the author for the code.
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Concise dynamics of active symbols
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Ordering of two-symbol blocks
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Figure 21: Summary of symbolic dynamics for the example in Fig. 20. See Ref. [17] for the derivation of the concise dynamics.

strategy by itself may nevertheless fail to find all topological
structures above the desired threshold.

A second strategy would be to start with a rather small and
simple homoclinic or heteroclinic trellis, and then recursively
expand the trellis by adding in higher and higher iterates of the
unstable manifold. Since this manifold is ultimately dense in
the chaotic sea, a sufficiently large number of iterates would
eventually detect any given topological feature. In practice,
one would stop adding new intervals once some tolerance, e.g.
some threshold in phase space area, is reached. A difficulty
with this approach, however, is that a large number of relatively
long intervals may be needed to penetrate into some important
areas of phase space (e.g. those near stable islands).

A third strategy, highlighted in Sec. 9, is to directly target
the vicinity of stable islands using stable and unstable mani-
folds that are attached to additional unstable periodic orbits near
the islands and that envelope the islands. With a numerically

computed phase space portrait, the larger of these islands can
easily be identified visually and unstable orbits between the is-
lands can typically be computed quite quickly. As demonstrated
in Fig. 1 and Fig. 19, this is an effective and readily imple-
mentable strategy. One drawback of the present implementation
is that it can be cumbersome to detect progressively smaller is-
land chains and to add in new stable and unstable branches “by
hand”.

The above three strategies are all useful approaches and can
be used in combination with one another to produce partitions
that capture arbitrarily small features in phase space. A remain-
ing question is how to achieve such fine-scale resolution with
maximal efficiency and physical insight. We envision a strategy
that starts with a simple trellis capturing the basic large-scale
dynamical features. This trellis would then be expanded to in-
clude higher and higher iterates of the unstable manifold. As
the unstable intervals begin to penetrate the region surround-
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Figure 22: Extreme itinerary tree graphically organizing the itineraries in Ta-
ble 2.

ing the stable islands, the algorithm would automatically de-
tect the presence of the islands and their associated unstable
orbits. These orbits and an initial finite length of their invariant
manifolds would then be added to the trellis, and the procedure
would continue. As more unstable intervals are added to the
trellis, more island chains would be detected and more stable
and unstable branches added to the trellis, penetrating closer to
the islands. Such an algorithm would necessarily have a tol-
erance (e.g. based on a threshold in the phase space area) so
that any topological feature below this tolerance would not be
refined further. Implementing such a strategy efficiently, and
in particular detecting when to add new branches to the trellis
(as opposed to simply expanding the existing branches), is the
subject of ongoing research.
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map, Physics Letters A 113 (5) (1985) 235 – 238.

[11] P. Grassberger, H. Kantz, U. Moenig, On the symbolic dynamics of the
Henon map, Journal of Physics A: Mathematical and General 22 (24)
(1989) 5217.
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