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Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given
a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a
function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from
periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a
given region of phase space can be computed by considering only periodic orbits that lie within the region. An
accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically
obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the
computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions
and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds
of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics
and periodic orbits, which are then used to find escape rates from different regions of phase space for the
Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which
are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After
the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit
continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The
escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte
Carlo simulations requiring hundreds of billions of orbits.

Asteroid escape rates, chemical reaction rates,
and fluid mixing rates are all examples of chaotic
transport rates. One can compute transport rates
by launching a Monte Carlo simulation over mil-
lions or billions of trajectories. However, it is pos-
sible to extract these rates from a much smaller
number of specially selected trajectories. One
method of doing so is by focusing on unstable
periodic orbits, which form the skeleton for the
behavior of chaotic dynamical systems. The lo-
cal stretching near periodic orbits contributes to
the overall escape rate, which can be computed
from the spectral determinant, a function that in-
corporates the eigenvalues of the periodic orbits.
We classify and find periodic orbits using finite-
length segments of stable and unstable manifolds
attached to certain key periodic orbits. In this
way, the use of stable and unstable manifolds to
compute periodic orbits can provide reliable esti-
mates of chaotic transport rates in a broad range
of deterministic chaotic dynamical systems.
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I. INTRODUCTION

We study asymptotic transport rates in chaotic sys-
tems, namely the escape rates of trajectories from one
region of phase space to another. The calculation of es-
cape rates has direct physical applications such as com-
puting atomic ionization rates, chemical reaction rates,
and asteroid escape rates1–5. Often, a chaotic system will
exhibit an exponential decay at long times, given by

N(t)→ N0e
−γt, (1)

where N(t) is the number of surviving trajectories as a
function of time, N0 is a constant, and γ is the asymp-
totic escape rate. The escape rate γ can be computed via
Monte Carlo (MC) simulation by evolving an initial en-
semble of points forward in time and counting the number
of surviving trajectories as a function of time. Unfortu-
nately a large number of initial points, often exceeding
millions or billions, can be necessary to accurately resolve
the asymptotic escape rate.

Our aim is to compute γ using fewer orbits, namely
unstable periodic orbits. Gutzwiller6,7 made early in-
sights into methods using periodic orbits when he de-
veloped the Gutzwiller trace formula, which he used to
compute fluctuations in the quantum density of states
for the anisotropic Kepler problem. (The computation
of classical escape rates follows directly from Gutzwiller’s
semiclassical formulation.) Although Gutzwiller’s origi-
nal trace formula method did not permit the convergent
computation of individual quantum eigenvalues, subse-
quent reformulations in terms of cycle expansions of spec-
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tral determinants, or “zeta functions,” provided better
convergence properties. For example, Cvitanovic and
Eckhardt8 successfully computed individual complex res-
onances of the three-disk scattering problem based on
cycle expansions. An in-depth explanation of spectral
determinants along with examples of quantum and classi-
cal escape-rate computations can be found in The Chaos
Book9. More broadly, our work is also motivated by
a large literature of theoretical and experimental work
demonstrating the role of periodic orbits in quantum
chaos10–16.

For the three-disk scattering problem, the periodic or-
bits can be labeled by a simple symbolic itinerary based
on the sequence of disks that are visited. In general, a
system’s symbolic dynamics can be represented by a net-
work. The nodes of the network correspond to regions
in phase space, and the edges correspond to the allowed
transitions between the regions. Once the system’s sym-
bolic dynamics is constructed, one can write down the
symbolic itinerary for any periodic orbit. This ability
allows for accurately characterizing and computing all
periodic orbits up to a chosen period, which is necessary
to apply the spectral determinant and to compute escape
rates. In many realistic physical systems, however, the
construction of symbolic dynamics is not obvious, mak-
ing the periodic orbits difficult to characterize and com-
pute. Our overarching goal is to compute escape rates in
realistic physical systems from the spectral determinant
by computing periodic orbits. To achieve this goal, we
will use recent methods in symbolic dynamics capable of
representing general two-degree-of-freedom Hamiltonian
systems. The ability to systematically compute symbolic
dynamics and periodic orbits allows for applying periodic
orbit theory to a broad range of physical applications, in-
cluding studying the role of periodic orbits in quantum
chaos in a real physical system, which is a future goal of
this work.

One challenge we wish to address is computing escape
rates in a mixed Hamiltonian phase space, where stable
islands are embedded in a chaotic sea. The rich fractal
structure of escape dynamics near the stable islands leads
to two complications in computing the spectral determi-
nant. The first complication is that the symbolic dy-
namics itself becomes very complex, requiring hundreds
of symbols, and more complicated periodic orbits are nec-
essary to converge to the true escape rate. The second
complication is that mixed phase spaces tend to exhibit
more pronounced multiexponential escape given by

N(t)→ N0e
−γ0t +N1e

−γ1t +N2e
−γ2t + ..., (2)

whereN0, N1, N2 are constants and γ0, γ1, γ2 are different
escape rates associated with different regions of phase
space. An example of a bi-exponential escape rate is
shown in Fig. 4. When the number of terms in Eq. (2) is
infinite, one can obtain an algebraic escape curve.

We address these two complications by using a tech-
nique called homotopic lobe dynamics17,18 (HLD), which
uses the topological forcing by intersections of stable and

unstable manifolds of a few anchor orbits to compute
symbolic dynamics and partition the phase space. Us-
ing HLD, an arbitrarily accurate partition of phase space
can be computed by incorporating longer and longer seg-
ments of the stable and unstable manifolds of anchor
orbits. Moreover, the periodic orbits are identified by
which region of phase space they occur in, and the dis-
tinct escape rates γi in Eq. (2) can be computed by using
only periodic orbits that lie in the region of interest (see
Sect. VII). The HLD technique can be used to specifi-
cally target the symbolic dynamics of a given region to
search for periodic orbits in that region. The escape rate
computed from the spectral determinant is compared to
MC computations. For other approaches to symbolic dy-
namics of tangles, see Refs.19–29.

Although we provide the machinery for computing the
spectral determinant in a mixed phase space, we focus
this study on a system where the accuracy of the sym-
bolic dynamics can be verified. One way to verify the
accuracy of symbolic dynamics is by checking the topo-
logical entropy, a measure of complexity and mixing in
phase space. Once the symbolic dynamics is computed
from HLD, the topological entropy is computed by taking
the natural log of the largest eigenvalue of the transition
matrix. Over the intervals of the Hénon map studied
in Sect. VI, for example, the topological entropy com-
puted from HLD matches the values computed using a
method based on computational Conley index theory by
Frongillo et. al30,31, and also matches the topological
entropy values computed using pruning of symbolic dy-
namics by Hagiwara and Shudo32. Agreement in topo-
logical entropy indicates that our symbolic dynamics ac-
counts for all periodic orbits. Therefore, by computing
periodic orbits over hyperbolic plateaus, which are pa-
rameter intervals where the symbolic dynamics does not
change, we can accurately compute the escape rate using
the spectral determinant. We also study what happens
to the convergence of the escape rate as the parameter
is varied within and away from the hyperbolic plateau.
To compute multiexponential escape rates, we focus on
a parameter range where a subregion of phase space is
within a hyperbolic plateau, while the full phase space
has a higher topological entropy and may or may not be
hyperbolic.

This paper is organized as follows. Section II sum-
marizes the method for computing the escape rate from
periodic orbits using the spectral determinant. Sec-
tion III introduces the map used in our study, the area-
preserving Hénon map. Section IV details the numerical
technique for computing the escape rate directly from
an MC simulation. Section V describes the full binary
symbolic dynamics for a specific parameter interval of
the Hénon map, and presents the escape rate data com-
puted from periodic orbits over this parameter range.
Section VI presents the symbolic dynamics for two hyper-
bolic plateaus of the Hénon map, along with periodic or-
bits and the escape rates computed from periodic orbits.
Section VII presents the symbolic dynamics and escape
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rates for a specific parameter range where the Hénon map
exhibits multiexponential escape rates, namely a faster
short-time escape rate and a slower, long-time escape
rate. Section ?? compares the results computed from
HLD with those computed from continuing orbits down-
ward from the full shift on two symbols. Appendix A
describes the details in extracting escape rate estimates
from MC data by fitting an exponential function to the
data. Appendix B describes the method of computing
periodic orbits given a partition using HLD.

II. COMPUTING ESCAPE RATES FROM PERIODIC
ORBITS USING THE SPECTRAL DETERMINANT

We present the derivation of a formula for spectral de-
terminant for computing the escape rate γ in Eq. (1)
following the discussion in Chaos Book9. The follow-
ing derivation applies for area-preserving maps on a 2D
plane, but a similar function applies for continuous-time
maps and in higher dimensions 9. For an area-preserving
mapping f(r), the Perron-Frobenius operator maps for-
ward densities according to

ρ′(r′) =

∫
dr L(r′, r)ρ(r), (3)

with kernel

L(r′, r) = δ(r′ − f(r)), (4)

and where ρ is an initial density function over phase space
and ρ′ is its forward iterate. The escape rate γ is equal to
the natural log of the largest eigenvalue λ of L. One way
to compute the leading eigenvalue of L is to find the zeros
of the determinant det(1 − zL), known as the spectral
determinant. The smallest real root z of the spectral
determinant greater than 1 yields γ, where γ = − ln(z).
The spectral determinant can be written as a power series

det(1− zL) = 1−
∞∑
n=1

Qnz
n, (5)

where Qn are coefficients to be determined. The com-
putation of γ then lies in computing the coefficients Qn
and finding the zeros of Eq. (5). To compute the coeffi-
cients Qn, it helps to take the logarithmic derivative of
the spectral determinant. It helps to take the logarithmic
derivative of the spectral determinant using

tr

(
zL

1− zL

)
= −z d

dz
ln det(1− zL)

= −
z d
dz det(1− zL)

det(1− zL)
.

(6)

The left hand side of Eq. (6) can be expanded in a Taylor
series in z as

tr

(
zL

1− zL

)
=

∞∑
n=1

Cnz
n, (7)

where

Cn = tr(Ln) (8)

are known as the trace coefficients. Taking the derivative
in Eq. (6) and substituting Eqs. (5) and (7) into Eq. (6)
yields the equation

(1−
∞∑
n=1

Qnz
n)

∞∑
m=1

Cmz
m =

∞∑
n=1

nQnz
n. (9)

Equation (9) provides a convenient way to compute the
coefficients Qn in terms of the coefficients Cn. Compar-
ing the coefficients of z on the left and right hand sides
of Eq. (9), we see that Q1 = C1. Similarly, it is easy to
prove by induction that

Qn =
1

n

[
Cn −

n−1∑
i=1

QiCn−i

]
. (10)

The coefficients Cn are defined in Eq. (8) and can be
written as

Cn =

∫
dr Ln(r, r) =

∫
dr δ(r− fn(r)). (11)

The delta function in Eq. (11) picks up a contribution
whenever r is a fixed point of fn(r), and so

Cn =
∑
r∗

1∣∣∣det(1− ∂f
∂r

n
|r∗)
∣∣∣ , (12)

where the sum is taken over all fixed points r∗ of fn. A
prime periodic orbit is one that is not a copy (or several
copies) of a lower-period orbit retracing itself. Equa-
tion (12) can be re-written in terms of prime orbits as

Cn =
∑
p

np

∞∑
r=1

1∣∣det(1−Mr
p )
∣∣δrnp n,∣∣det(1−Mr

p )
∣∣ =

∣∣(1− λrp) (1− λ−rp )∣∣ ,
(13)

where

Mp =
∂f

∂r

np
∣∣∣∣
r∗

, (14)

np is the period of r∗, and λp is the greater eigenvalue of
Mp. The escape rate γ is computed by first computing all
prime periodic orbits up to period n and computing the
trace coefficients Cn using Eq. (13). Then the coefficients
Qn are computed using Eq. (10). The escape rate γ is
then computed by finding the roots of the polynomial in
Eq. (5).

One consequence of the spectral determinant for com-
puting γ is that escape from a given region only depends
on the periodic orbits in that region, and including or re-
moving regions that have no periodic orbits in them does
not change the escape rate.
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FIG. 1. (Color online) The topological entropy lower bound
computed from HLD as a function of k for the area-preserving
Hénon map. The vertical bands indicate the parameter ranges
whose periodic orbits are computed in Sects. V-VII. The right-
most band (red) marks the k interval [5.699,∞) where the
topological entropy is ln(2). The grey and magenta bands
denote the k intervals [5.194, 5.5366] and [4.5624, 4.5931] re-
spectively, which are both hyperbolic plateaus with topolog-
ical entropy ln(1.969) and ln(1.895) respectively. The green
band denotes the interval [4.1930, 4.201] where the inner re-
gion is fully hyperbolic. The topological entropy of the inner
region for this k interval is exactly half the entropy as the k
interval [4.5624, 4.5931].

III. THE AREA-PRESERVING HÉNON MAP

Our model of choice for computing escape rates is the
Hénon map33, given by

x̃t+1 =ỹt − k + x̃2t ,

ỹt+1 =− bx̃t,
(15)

where k and b are parameters of the map. We plot the
figures in this paper using rotated coordinates x = (x̃ −
ỹ)/
√

2, y = (x̃+ ỹ)/
√

2, so that the symmetry axis is hor-
izontal. We define M as the map which evolves a point
rt = (xt, yt) forward to the point rt+1 = (xt+1, yt+1).
Although the techniques discussed throughout this pa-
per are valid for maps that are not area-preserving, we
require area-preservation here (b = 1) to connect with
Hamiltonian dynamical systems. Given b = 1, M can
exhibit a variety of chaotic behavior ranging from a com-
plete binary horseshoe at k > 5.699 to a mixed phase
space with stable islands embedded in a chaotic sea at
lower k values.

Figure 1 shows the topological entropy of the Hénon
map computed over a range of k values using symbolic
dynamics computed from HLD. The rightmost shaded
band denotes the k interval [5.699,∞) where the dy-
namics exhibits a complete horseshoe with topological
entropy of ln(2). As k is lowered, the topological en-
tropy decreases monotonically. This decrease is not
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FIG. 2. (Color online) The resonance zone (yellow) for k = 10.
The asterisk marks the location of the fixed point whose sta-
ble (red) and unstable (blue) manifolds bound the resonance
zone. The vertical line used to define escape for MC simula-
tions is shown in black. The initial ensemble of points for MC
simulations is shown in green.

strictly monotonic because of the existence of hyperbolic
plateaus, which are intervals of k where the dynamics is
hyperbolic and the topological entropy does not change.
The grey and magenta bands denote the intervals of
k that Arai identified as hyperbolic plateaus34, namely
[5.194, 5.5366] and [4.5624, 4.5931]. The green band de-
notes an interval of k where a subregion of phase space
exhibits exactly half the entropy as the plateau shown in
magenta. In this case, the subregion exhibits a hyper-
bolic plateau when treated as its own dynamical system.

IV. MONTE CARLO COMPUTATION OF ESCAPE
RATE

Throughout this study, we compute the escape rate γ
using an MC method to compare with the value obtained
from periodic orbits. The phase portrait for k = 10 is
shown in Fig. 2. The resonance zone (yellow) is bounded
by the stable and unstable manifolds of a hyperbolic
fixed point, and contains all of the periodic orbits in
the system. Escape from the resonance zone is defined
by leaving the zone and entering the unbounded white
region. Alternatively, escape can be defined as passing
to the right of the vertical line in Fig. 2. Both defini-
tions give exactly the same escape rate since no peri-
odic orbits exist outside the resonance zone. The initial
points, shown in green in Fig. 2, are chosen near the fixed
point. Due to ergodicity, the exact choice of initial en-
semble does not affect the decay rate. Figure 3 shows
the number of surviving trajectories along with the fit
line whose slope gives the approximation to the escape
rate. Here the vertical line is used as the escape cri-
terion. Depending on available computational resources
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FIG. 3. (Color online) The number of surviving (blue dots)
trajectories as a function of iterate for k = 10. The fitting
function (red) is fit to the iterate interval [6, 20]. The escape
rate computed from this fit is 1.02814 ± 0.00071. Inset: The
escape rate upper (red) and lower (blue) bounds as a function
of fit interval. The end point of the fit interval is 20 iterates.
The error bounds chosen for comparison with periodic orbits
are shown in black.

at the time of study, the MC simulations were either
run using the Message Passing Interface (MPI)35 on the
Multi-Environment Research Computer for Exploration
and Discovery (MERCED) using 25 20-Core Xeon E5
2650v4 nodes, or using the Compute Unified Device Ar-
chitecture (CUDA)36 on an NVIDIA GTX 970 graphics
processing unit. Appendix A describes the fitting method
used and the choice of error bounds based on the good-
ness of fit.

In the case of multiexponential escape, as in Eq. (2),
choosing an initial ensemble just outside the resonance
zone is more suitable. Starting the initial points out-
side the resonance zone gives more time for transients to
expire before the points begin to escape, allowing for a
more accurate observation of the fast, initial escape rate.
Such a computation of escape also mimics the scatter-
ing of electrons from nuclei in chaotic atomic systems,
as studied in Refs.37,38. After iterating the initial points
forward they enter the resonance zone before escaping
past the vertical line. For k = 4.1933, the escape curve
is biexponential, as shown in Fig 4, exhibiting a fast, ini-
tial escape rate and then a slow, secondary escape rate.
We compute the two escape rates for k = 4.1933 using
periodic orbits in Sect. VII.

V. ESCAPE FOR A FULL SHIFT ON TWO SYMBOLS

We first demonstrate the spectral determinant tech-
nique for k > 5.699, where the dynamics is a complete
binary horseshoe. The dynamics can be encoded using
two symbols denoted 0 and 1, whose corresponding par-
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FIG. 4. (Color online) The number of surviving trajectories
as a function of iterate for k = 4.1933, using initial points
outside the resonance zone. The secondary escape rate is
computed first by taking a natural log of the data and fitting
a line to the interval starting at iterate 52 and ending at
iterate 80. The short-time escape rate is then computed by
subtracting the resulting fitting function from the data and
fitting to the interval starting at iterate 13 and ending at
iterate 24. Inset: The phase portrait near the fixed point for
k = 4.1933. The asterisk marks the location of the fixed point
whose stable (red) and unstable (blue) manifolds bound the
resonance zone. The initial ensemble of MC points is shown in
green. Details of computing the fitting function are described
in Appendix A.

tition domains are shown for k = 10 in Fig. 5. The sym-
bolic dynamics transition graph is shown in the inset of
Fig. 5. All periodic orbits in the system consist of points
lying in region 0 and region 1, and the symbolic itinerary
of any period-N orbit is a binary string of length N .

A. Periodic orbit computation of γ

An accurate partitioning of the phase space and cor-
responding symbolic dynamics allows for characterizing
and computing periodic orbits in order to compute γ from
the spectral determinant. The symbolic dynamics is used
to generate a symbolic itinerary for a given periodic or-
bit. The symbolic itinerary along with the correspond-
ing partition domains are used to construct a seed. The
seed is then used in a multi-point shooting method to
compute the periodic orbit. Appendix B explains how
to generate accurate seeds using the boundaries of the
partition domains and how to compute periodic orbits.
Once the periodic orbits are computed, the eigenvalue λp
of each orbit is computed from the explicit linearization
of Eq. (15). The values of λp and their corresponding pe-
riods are used to construct the spectral determinant and
find the zeros of Eq. (5). The escape rate computed from
periodic orbits becomes more accurate as higher-period
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FIG. 5. (Color online) k = 10 partition domains. The peri-
odic orbits up to period 13 are plotted in black. The symbolic
dynamics (inset) is a full shift on two symbols.

Period Cumulative number of orbits γ

1 2 1.1989476364

2 3 0.99036961

3 5 1.0371111058

4 8 1.0274997079

5 14 1.0278413650

6 23 1.0279897430

7 41 1.0280053653

8 71 1.0280053619

9 127 1.0280053745

10 226 1.0280053736

11 412 1.0280053736

12 747 1.0280053734

13 1337 1.0280053742

Monte Carlo 1.02814 ± 0.00071

TABLE I. The cumulative number of periodic orbits used up
to the given period and the value of γ computed from the
spectral determinant up to that period for k = 10.0. The
error bound for the MC method is computed using the 95%
confidence interval from the fit.

orbits are used, as shown in Fig. 6 and Table I.
Once periodic orbits are computed for a given value

of k, they can be used as seeds for computing orbits for
a nearby k value, because a small change in k results
in a small change in the locations of the periodic orbits.
Thus, k can be varied iteratively and periodic orbits can
be computed over a range of parameter values, which is
a technique known as periodic orbit continuation. The
periodic orbits are then used to compute the escape rate
from the spectral determinant. Periodic orbits that dis-
appear or become stable in a bifurcation as k is lowered
are removed from the spectral determinant computation.

0 5 10

Highest period orbit used

0.95
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1.05

1.1

1.15

1.2

γ

4 6 8 10 12

1.027

1.028

1.029

FIG. 6. (Color online) Escape rate versus period for k = 10
using the spectral determinant (black). The red band is the
MC 95% confidence interval 1.02814 ± 0.00071. Due to strong
hyperbolicity for this k value, the periodic orbit escape rate
converges exponentially to the MC value as a function of the
highest period orbit used.

Figure 7 shows the escape rate as a function of k for
the interval [5.1, 10.0] using both MC and periodic orbit
methods. Below k = 5.699, the phase space no longer
exhibits a complete binary horseshoe, and periodic or-
bits begin to bifurcate. The spectral determinant com-
putation accurately matches the MC value for the en-
tire interval shown in Fig. 7, however, as k falls below
k = 5.699, the computation requires more orbits to ac-
curately match the MC computation, as shown in the
fluctuations in the spectral determinant computation at
lower period below k = 5.699 in the inset of Fig. 7.

VI. ESCAPE OVER HYPERBOLIC PLATEAUS

As k is lowered, the Hénon system no longer exhibits
a full binary symbolic dynamics.

A. Computing periodic orbits with HLD

When k is less than 5.699, the topological entropy be-
gins to fall below ln(2) as periodic orbits are lost in bifur-
cations. We employ a technique called Homotopic Lobe
Dynamics17,18 (HLD) to compute the system’s symbolic
dynamics and the corresponding partition. This auto-
mated technique uses information encoded in the inter-
sections of finite-length segments of stable and unstable
manifolds of periodic orbits. In the HLD technique, the
stable and unstable manifolds of the anchor periodic orbit
are first computed up to a primary intersection point23.
Then pieces of the unstable manifold are iterated forward
a finite number of times, and the symbolic dynamics is
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FIG. 7. (Color online) The MC (red) and spectral determi-
nant (blue) escape rates as a function of k for k ∈ [5.1, 10].
The two curves lie almost on top of each other. Above
k = 5.699 (red band), the symbolic dynamics is a full shift on
two symbols and all periodic orbits up to period 13 are used
in the computation of γ. As k is lowered past 5.699, periodic
orbits that disappear or become stable in a bifurcation are
removed from the spectral determinant computation. Inset:
The spectral determinant escape rate computed as a function
of period for the k range [5.1,6.6], specified by the colorbar.
The escape rate for the bifurcation point, k = 5.699, is plotted
in black.

extracted from the intersections of the stable and unsta-
ble manifolds. The finite-length segments of stable and
unstable manifolds used for computing HLD are known
as a trellis; a trellis for k = 5.4 is shown in Fig. 8a.
The resulting symbolic dynamics computed from HLD is
shown in Fig. 8b and a schematic representation of the
corresponding partition is shown in Fig. 8c. The peri-
odic orbits are computed from the partition as described
in Sect. V and Appendix B, and are shown in Fig. 9.

B. Computing escape rates with periodic orbits

We now focus on two fully hyperbolic intervals of k
whose rigorous bounds were identified by Arai34, namely
[5.194, 5.5366] and [4.5624, 4.5931]. Such hyperbolic in-
tervals of k are useful for computing escape rates from
periodic orbits because no orbits are lost or created in
bifurcations as k is varied over the interval. Once pe-
riodic orbits are computed for a given k value within a
hyperbolic plateau, they can be computed for the en-
tire interval using periodic orbit continuation. Figure 10
shows the escape rate as a function of the highest period
orbit used using the spectral determinant for k = 5.4,
chosen near the center of the hyperbolic plateau. The es-
cape rate is then computed for k ∈ [5.194, 5.5366] using
periodic orbit continuation, shown in Fig. 11a. The same
process is used to compute the escape rate for the interval

FIG. 8. (Color online) (a) The trellis for k = 5.4. (b) The
transition graph computed from HLD. (c) A schematic repre-
sentation of the corresponding partition.
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FIG. 9. (Color online) All periodic orbits up to period 13 for
k = 5.4.

[4.5624, 4.5931]. The periodic orbits are first computed
for k = 4.575 using HLD, then periodic orbit continua-
tion is used to compute the escape rate over the entire
interval, shown in Fig. 11b. For both hyperbolic plateau
intervals, the escape rate computed from periodic orbits
accurately predicts the MC escape rate within the hy-
perbolic plateau. As k is lowered below the hyperbolic
plateau bound, periodic orbits that become stable or are
lost in a bifurcation begin to distort the periodic orbit
computation of γ, and the periodic orbit estimate begins
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FIG. 10. (Color online) Escape rate versus period for k = 5.4
computed from periodic orbits (black) and MC simulation
(red band).

to vary from the MC value. The escape rate goes to zero
every time a periodic orbit bifurcates, which causes the
dips in the blue data in Fig. 11(a). In Fig. 11(b), none
of the periodic orbits computed at k = 4.575 bifurcate
in the interval shown. As k is increased above the hy-
perbolic plateau bound, orbits that exist at the higher k
value are not accounted for, and therefore the periodic
orbit estimate of the escape rate becomes less accurate.

VII. MULTIEXPONENTIAL ESCAPE RATES

For the k values studied in Sects. V and VI, the dy-
namics exhibits a single exponential escape rate as in
Eq. (1). More complicated phase spaces can exhibit mul-
tiexponential escape rates as in Eq. (2) and as shown for
k = 4.1933 in Fig. 4. The inset of Fig. 12 shows the
phase portrait at k = 4.1933, which exhibits three dis-
tinct zones: Zone 0 (white), Zone I (yellow), and Zone
II (red). Zone II is bounded by the stable and unstable
manifolds of an inner fixed point with inversion, meaning
it has a negative eigenvalue. All periodic orbits within
Zone II, except for the fixed point, have an even period.
Although the inner period-two structure in Zone II per-
sists at k > 4.28, the boundary of Zone II intersects the
boundary of Zone I, and it becomes difficult to distin-
guish two distinct escape rates.

A. Inner hyperbolic plateaus

Zone II in Fig. 12 can be treated as its own dynam-
ical system, which exhibits its own hyperbolic plateaus.
Using HLD applied to the stable and unstable manifolds
of the inner fixed point, we identified a parameter value

FIG. 11. (Color online) Escape rates computed using the
spectral determinant (blue) and MC simulation (red) versus
k for (a) k ∈ [5.1, 5.6] and (b) k ∈ [4.54, 4.62]. The shaded
bands denote the hyperbolic plateaus [5.194,5.5366] (grey)
and [4.5624, 4.5931] (magenta).

k = 4.3 for which the topological entropy of Zone II is ex-
actly half the topological entropy of the full phase space
over the plateau [5.194, 5.5366]. Moreover, the HLD sym-
bolic dynamics of the bottom half of M2 in Zone II is
identical to the HLD symbolic dynamics of the full phase
space under M for k ∈ [5.194, 5.5366].

Unfortunately, we did not detect a strong secondary
exponential decay at k = 4.3. Thus we searched for
a hyperbolic plateau for Zone II with exactly half the
topological entropy as the full phase space for k ∈
[4.5624, 4.5931], the lower hyperbolic plateau studied in
Sect. VI. The interval k ∈ [4.1930, 4.201] was found to
have this topological entropy, and furthermore the bot-
tom half of Zone II under M2 has the same HLD symbolic
dynamics as k ∈ [4.5624, 4.5931] under M . The topology
of the inner trellis remains the same over this interval
and therefore there are no bifurcations in periodic orbits
within the inner zone. The trellis at k = 4.1933, near the
center of the plateau, is used to compute the HLD, the
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Starting Zone, Escape Zone PO Monte Carlo

γI I, 0 ∪ II 0.3781 0.35823 ± 5e-5

γII II, 0 ∪ I 0.18039 0.18245 ± 3e-5

γI,II II, 0 0.16512 0.16406 ± 2e-5

TABLE II. Summary of the three escape rates γI , γII , and
γI,II along with the periodic orbit and MC escape rate com-
putations for k = 4.1933.

partition, and the periodic orbits.

B. Monte Carlo computations for nested zones

Unlike Sects. V and VI, where a vertical line is used to
define escape, the escape criterion for the nested zones is
based on the boundaries of individual resonance zones.
The initial points are chosen to be uniformly distributed
in a particular zone, and the escape criterion is defined as
entering a different zone. The zone in which a particular
point lies is determined using a point-in-polygon test.
As points are mapped forward, their zone is computed
and the number of surviving trajectories is counted as a
function of iterate. For phase spaces such as the inset of
Fig. 12, three distinct escape rates can be computed as
summarized in Table II: escape from Zone I, escape from
Zone II, and escape from the union of Zones I and II,
labeled as γI , γII , and γI,II respectively. The escape rate
γI is computed by choosing the initial points in Zone I
and defining escape as entering Zones II or 0. The escape
rate γII is computed by choosing initial points in Zone
II defining escape as entering Zones I or 0. The escape
rate γI,II can be computed by choosing initial points in
the union of Zone I and Zone II and defining escape as
entering Zone 0. In this case, since Zone II has the slowest
escape rate, γI,II will be dominated by the points starting
in Zone II. Therefore γI,II is computed more accurately
by choosing initial points in Zone II and defining escape
as entering Zone 0. The MC curves for γI , γII , and γI,II ,
including the two different ways of computing γI,II , are
shown in Fig. 12. The resulting escape rates computed
from MC are shown in Table II.

Comparing the results in Table II to the MC simulation
and bi-exponential fit in Fig. 4, the slow escape rate in
Fig. 4 matches the MC escape rate γI,II , and the fast
escape rate in Fig. 4 is quite close to γI . This is because
the fast, initial escape rate in Fig. 4 is due to points that
initially escape from Zone I, and the slower, secondary
escape rate is due to points that stay in Zones I and II
longer and eventually escape.

C. Nested trellis

An important advantage of the HLD technique is the
ability to target individual regions of phase space by in-
cluding the stable and unstable manifolds of additional
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FIG. 12. (Color online) MC escape rates for different zones
for k = 4.1933. The initial points are chosen uniformly from
the starting zone, and escape occurs when a point enters the
escape zone. In green, the MC escape rate for γI,II is com-
puted using Zone II as the starting zone and the union of Zone
I and Zone 0 as the escape zone . In black, a different com-
putation for γI,II is computed using initial points in Zone II
and defining escape as entering Zone 0. The green and black
lines are parallel, but the black line yields a better estimate
for the value γI,II , because the MC simulation for the green
data includes points in the outer zone, which have a faster
initial escape, while the black line levels off more quickly. In
blue, the MC escape rate for γI is computed, using initial
points distributed uniformly in Zone I and defining escape as
entering Zone II or Zone 0. In red, the MC escape rate γII is
computed using initial points distributed uniformly in Zone
II and defining escape as entering Zone I or Zone 0. Inset:
The two resonance zones. We denote the unbounded white
region as Zone 0, the bounded yellow region as Zone I, and
the inner bounded red region as Zone II.

periodic orbits, creating a nested trellis18. This technique
can be used to target Zones I and II in the inset of Fig. 12.
To target Zone I, the stable and unstable manifolds of the
outer fixed point are used, as in Sects. V and VI. To tar-
get Zone II, the stable and unstable manifolds of the the
inner fixed point with inversion are also included. The
resulting trellis is shown in Fig. 13a. The additional het-
eroclinic intersections included in the nested trellis lead
to a better sampling of the topology of phase space, com-
pared to using the outer trellis alone. Using the nested
trellis results in a more accurate symbolic dynamics for
the full phase space, whose transition graph contains 351
nodes and 645 edges. The corresponding partition com-
puted from HLD is shown in Fig. 13b. The periodic or-
bits computed from the partition domains are shown in
Fig. 13c.

From the nested trellis, three different transition ma-
trices are obtained. TI is the transition matrix for Zone
I, TII is the transition matrix for Zone II, and TI,II is
the transition matrix for the union of Zones I and II. The
transition matrix TI,II contains all the nodes and edges
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FIG. 13. (Color online) (a) Full trellis for k = 4.1933. (b)
The partition for k = 4.1933. Some partition domains com-
puted from HLD make additional intersections with the stable
manifold and extend outside the resonance zone. This is due
to additional structure in the trellis that is not detected by
initial computation of symbolic dynamics using HLD18. (c)
All periodic orbits up to period 14 for k = 4.1933.

in TI and in TII , but it also contains additional edges
that connect Zones I and II. It does not contain any ad-
ditional nodes, as all nodes lie in either Zone I or Zone
II. The topological entropies of TI , TII , and TI,II are
ln(1.8311), ln(1.3766), and ln(1.8390) respectively. The
topological entropy of Zone II at k = 4.1933 is exactly
half that of the full phase space at k ∈ [4.5624, 4.5931].

D. Periodic orbits and spectral determinants for nested
zones

To compute the escape rate from a given zone using
the spectral determinant, we include only periodic orbits
from that zone. The escape rate γI is the escape from
Zone I, and therefore γI is computed using periodic orbits
that lie only in Zone I, computed from TI . The escape
rate γII is the escape rate from Zone II, and therefore
γII is computed using only periodic orbits that lie only
in Zone II, computed from TII . The escape rate γI,II is
the escape rate from both zones, and therefore γI,II is
computed using all periodic orbits, computed from TI,II .
The three distinct escape rates computed with periodic
orbits and MC simulations are shown in Fig. 14 and Ta-
ble II. Targeting the inner region and capturing its full
topology using HLD allows for computing all periodic or-
bits up to period 20, which yields an accurate value for
the escape rate γII (red). Using the nested trellis ap-
proach with the stable and unstable manifolds from both
resonance zones also yields an accurate result of the es-
cape rate γI,II (black), even though our computation of
HLD has not extracted the exact symbolic dynamics, and
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FIG. 14. (Color online) The periodic orbit and MC computa-
tions of γI (blue), γII (red) and γI,II (black) using periodic
orbits (lines with asterisks) and MC simulation (horizontal
bands) for k = 4.1933.

some periodic orbits may be missing from the computa-
tion. The outer escape rate γI (blue) is the least accurate,
which means some periodic orbits are missing from the
HLD computation, or more orbits of higher period are
required to accurately obtain the escape rate. Figure 15
shows the escape rates computed as a function of k using
periodic orbit continuation, along with the corresponding
MC escape rates. The inner escape rate γII is computed
accurately over the entire interval. The escape rate for
both zones, γI,II , is computed most accurately at the k
value where HLD is computed, k = 4.1933, and captures
part of the variation in escape rate as k is varied. The
escape rate from the outer zone γI is computed less ac-
curately over this k range. Finally, note that errors on
the escape rates γI , γII , and γI,II are smaller than the
differences between the rates.

VIII. CONCLUDING REMARKS

Single-exponential and multi-exponential escape rates
can be reliably computed using periodic orbits from HLD
in lieu of an MC simulation requiring tens of billions of
orbits. Unlike MC simulations, which require the compu-
tation of large numbers of trajectories at each parameter
value where escape rates are computed, periodic orbit
continuation allows for accurate computation of escape
rates over a range of parameter values once the periodic
orbits are found for a particular parameter value. The
result of HLD is particularly accurate within hyperbolic
plateaus where no periodic orbits bifurcate. By finding a
parameter range where an inner resonance zone exhibits
a hyperbolic plateau, we use periodic orbits from HLD
to compute distinct, multiexponential escape rates from
different resonance zones.
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FIG. 15. (Color online) The escape rates γI (blue), γII (red),
and γI,II (black) computed as a function of k using MC (bold
with error bars) and with periodic orbits (finer line with no
markers). Once an orbit becomes stable or is lost in a bifur-
cation, it is removed from the spectral determinant calcula-
tion for all lower k values. The vertical magenta line denotes
k = 4.1933, the value at which HLD was computed to com-
pute the periodic orbits.
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Appendix A: Choosing appropriate fit intervals and error
bounds for Monte Carlo escape rates

Once the MC data shown in Fig. 3 (blue) is computed
by counting the number of surviving trajectories as a
function of time, the escape rate is computed by fitting a
line to the log of this data. The starting and ending iter-
ates for the fit interval must however be carefully chosen
to obtain an accurate bound on the escape rate. If the
starting iterate of the fit interval is too low, the transients
will not have expired, and correlated trajectories that es-
cape in the first several iterates will provide an inaccurate
result for the escape rate. If the starting iterate of the fit
interval is too high, there will be too few points remaining

in the simulation to properly sample the phase space and
resolve the escape rate of the system. If the end point
of the fit interval is too low, the data at later iterates is
not being utilized, and the accuracy of the escape rate
computation is compromised. If the end point of the fit
interval is too high, then later iterates, which have low
statistics, will throw off the accuracy of the escape rate.
To get around this issue, the fit is computed over every
possible starting and ending point value, and the starting
and ending point with the tightest confidence interval is
chosen. The inset of Fig. 3 shows the escape rate upper
and lower bounds computed as a function of the starting
point of the fit interval by fixing the ending point of the
fit interval at 25. The escape rate estimates are wider for
the first few iterates, then they level off and remain flat,
but at even later iterates the error bars eventually grow
large when the remaining number of surviving trajecto-
ries is low. The smallest error bounds shown in black
are chosen. This technique is used for computing all MC
escape rates in Sects. V-VII.

In the case of the scattering problem studied in Fig. 4,
the bi-exponential escape rate is computed by first fit-
ting an exponential to the later iterates to extract the
secondary decay, then subtracting that fit function from
the data, and finally fitting to the earlier iterates of the
data to compute the initial decay.

Appendix B: Method to compute periodic orbits

The computation of periodic orbits from Newton’s
method requires an initial guess. The HLD technique
allows for choosing an initial guess based on partition do-
mains and symbolic dynamics. Each periodic orbit has
a symbolic itinerary representing it, and the initial guess
for each point in a symbolic itinerary is chosen as the
center of the partition domain with the corresponding
symbol. For example, for the full shift on two symbols,
every periodic orbit can be labeled using a sequence of
0’s and 1’s. The two labels correspond to the partition
domains shown in Fig. 5. The center of each partition
domain is used as a seed. The seed points are then used
in Newton’s method to solve an equation of the form

M(r1)− r2
M(r2)− r3

...

M(rn−1)− rn
M(rn)− r1

 =


0

0
...

0

0

 (B1)

where ri are the points in the periodic orbit of period n.
For example the unknown periodic orbit whose itinerary
is 010 consists of a sequence of three unknown points
r1r2r3. The equation to solve using Newton’s becomes M(r1)− r2

M(r2)− r3
M(r3)− r1

 =

 0

0

0

 . (B2)
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FIG. 16. (Color online) A refinement of the full shift on two
symbols. The extended stable manifold (red) cuts the parti-
tion domains for 0 and 1 into four new partition domains rep-
resenting the two-symbol strings 0.0, 0.1, 1.0, and 1.1. This
symbolic dynamics generates the same periodic orbits and
therefore has the same topological entropy of ln(2) as the full
shift on two symbols.

Since the symbolic itinerary of this example orbit is 010,
the initial guess in Newton’s method is the sequence of
points r1r2r3 = s0s1s0, where s0 is the center of partition
domain 0 and s1 is the center of the partition domain 1.

For some higher-period orbits, using the centers of the
original partition domains is not sufficient to compute pe-
riodic orbits, i.e. the seed point does not converge to the
correct periodic orbit under Newton’s method. In this
case, we refine the partition domains to select a more ac-
curate seed. Since the partition domains are bounded by
segments of stable and unstable manifolds, they can be
cut into smaller partitions by mapping the boundaries of
the partition domains forward or backward to cut them
domains into smaller portions. Adding symbols on the
right refines the partition domain by iterating the stable
manifold backward; adding symbols on the left refines
the partition domains by iterating the unstable manifold
forward. For example, for the full shift on two symbols,
one can cut the partition domains 0 and 1 in Fig. 5 into
four partition domains, 0.0, 0.1, 1.0, and 1.1 in Fig. 16,
where 0.0 represents a point that is in 0 now and maps
to 0 in the future, and 0.1 represents a point that is in
0 now and maps to 1 in the future, and so on. The
seed point for the period-three orbit 010 now becomes
s0.1s1.0s0.0. This seed is more likely to converge to the
desired periodic orbit. The symbolic dynamics expressed
in terms of the symbols {0.0, 0.1, 0.1, 1.1} is isomorphic
to the original symbolic dynamics. In this manner, the
partition domains can be refined for arbitrarily long sym-
bol strings by iterating the stable or unstable manifold
more and more times. The boundaries of partition do-
mains that have longer stable or unstable segments can

be mapped backward or forward to form a more balanced
partition domain, which effectively moves the dot in the
direction that the partition domain is being mapped.
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