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Abstract

Computing Symbolic Dynamics and Chaotic Transport Rates from Invariant Manifolds

by

Sulimon Sattari

Doctorate in Physics

Ajay Gopinathan, Chair

University of California, Merced

2017

Abstract

The escape rate of asteroids, chemical reaction rates, and fluid mixing rates are all examples

of chaotic transport rates in dynamical systems. A Monte Carlo simulation can be used to compute

such rates, for example using a model consisting of a system of ODEs or PDEs. The set of

trajectories in a chaotic system can be highly complex, and a Monte Carlo simulation often requires
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millions or billions of trajectories to properly sample the state space and compute accurate transport

rates. We study methods of computing transport rates using a smaller number trajectories by

studying the structure of the state space or phase space. One way to analyze chaotic phase spaces is

to compute symbolic dynamics, which is the labeling of trajectories based on a partitioning of the

space. The symbolic dynamics of the system can be represented as a network consisting of a set of

partition elements, the nodes, and the allowed transitions between them, the edges. In a Hamiltonian

system, for example, a partition element represents a region of phase space, and edges connect pairs

of nodes between which transport is allowed in time. A firm grasp of the symbolic dynamics results

in the ability to compute important transport rates, including the topological entropy and the escape

rate.

One way to compute symbolic dynamics is using invariant manifolds which can divide the

state space into pieces. The collection of stable and unstable invariant manifolds is known as a

heteroclinic tangle, and the topology of the intersections of stable and unstable manifolds in the

tangle encodes information about restrictions on the dynamics. The question we address is How can

symbolic dynamics computed from invariant manifolds reduce the number of trajectories required

to compute transport rates? In addition, we ask and try to address what useful information does

the topology of invariant manifolds tell us about a system that is not apparent from direct or Monte

Carlo computation of transport rates? An essential tool in computing the transport rates will be the

computation of periodic orbits and using a function called the spectral determinant.

We study several examples of understanding phase space and computing chaotic transport rates

using a technique called Homotopic Lobe Dynamics (HLD), which is an automated technique to

compute accurate partitions and symbolic dynamics for maps by using the topological forcing

by intersections of stable and unstable manifolds of a few anchor periodic orbits. We have

applied the HLD technique to analyze and compute transport rates in three systems. In a

two-dimensional, double-gyre-like cavity flow that models a microfluidic mixer, we accurately

compute the topological entropy over a range of parameter value. In the Hénon map, we use periodic

orbits computed from HLD to compute multiexponential decay rates from different zones. In the

hydrogen atom in parallel electric and magnetic fields, we use periodic orbits computed from HLD

to compute the ionization rate over a range of electron energy where the system exhibits a ternary
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horseshoe. In each system, computations of transport rates over ranges of parameter value using

HLD provided considerable improvements upon previous attempts to compute the same rates.
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Chapter 1

Motivation and Background

A mathematical description of how one state develops into another state over time, also known

as a dynamical system, is a fundamental tool for describing physical systems. Dynamical systems

model natural phenomena at every length and time scale, for example atmospheric transport,

swarming of bacteria, fluctuations in the stock market, evolution of galaxies, and photoionization

of atoms [20, 21, 43, 56–58]. A remarkable result of dynamical systems theory is that universal

properties apply to large classes of dynamical systems irrespective of physical phenomena and

scale. One example of this is in Hamiltonian mechanics, where the same mathematical formalism

applies to many types of physical systems. In some cases, the same exact Hamiltonian governs two

completely different phenomena, such as in the restricted three-body problem in the Solar system,

which, under proper scaling and coordinate transformation, also models a simple unimolecular

chemical reaction [42]. Researchers in two different disciplines could be studying the same

problem without realizing it, and dynamical systems theory is one field that attempts to bridge

such gaps when possible. For example, the methods of normal form theory developed by chemical

reaction dynamicists studying electron trajectories were later used by NASA to compute low-fuel

spacecraft trajectories in the Solar system [41]. The relationship between chemical and astronomical

Hamiltonian physics is only one specific example of universality in chaotic dynamical systems,

which is one reason why it is useful to study chaotic dynamical systems from a broad point of view.

Another important universal concept in many dynamical systems, which is one we focus on

in our study in this manuscript, is the geometry of phase space. The phase space is the set of all

1
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possible states a trajectory can have in a dynamical system, and there are general statements that can

be made about the geometry of the state space of certain classes of systems. For example, it is known

that the phase space of a Hamiltonian system cannot contain sinks or sources because of energy

conservation. Realistic physical Hamiltonian systems are typically chaotic, and although such

systems contain no sources or sinks, the phase space may contain saddle fixed points or elliptic fixed

points. The defining property of saddle points is that they have both stable and unstable directions,

and each direction has a stable or unstable manifold associated with it which are associated with the

backward- or forward-time dynamics of trajectories that begin near the saddle point. The geometry

of the stable and unstable manifolds of saddle points, as we will develop in this manuscript, encodes

important information about the dynamical system a a whole. Our work involves computing finite

segments of stable and unstable manifolds of saddle points, analyzing their topology, and extracting

relevant information such as symbolic dynamics, mixing rates, and escape rates by using a technique

called homotopic lobe dynamics (HLD). We will unpack this terminology and describe an example

of applying the HLD technique to a fluid flow system in Sect. 1.2.2.

We will demonstrate new applications of the HLD technique by studying three different physical

systems: a two-dimensional, double-gyre-like cavity flow, the Hénon map, and the hydrogen atom in

parallel electric and magnetic fields. In each system, the calculation of transport rates over ranges of

parameter value using HLD provide considerable improvements upon previous attempts to compute

the same rates. Each application of the HLD technique augments our understanding of it in a unique

way. For example, in a fluid flow (Chapter 2) we demonstrate the first example of computing HLD in

a fluid dynamics simulation, and explain the mixing by computing the important heteroclinic orbits

that stir the fluid, while also providing a comparison to braiding theory an almost cyclic sets. In the

Hénon map, (Chapter 3) we provide the first example of using HLD to compute multi-exponential

decay rates using periodic orbits, and we compute accurate escape rates from different regions of

phase space. In the hydrogen atom in parallel electric and magnetic fields (Chapter 4), we provide

the first example of successfully computing ionization rates over a range of electron energy value in

a classically chaotic atomic system, which can be useful for studying its quantum counterpart and

the relationship between classical and quantum chaos.
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Although this work involves purely mathematical models, our findings are promising for

experimental applications. The ionization rates computed for the hydrogen atom can be realized

in experiments involving Rydberg atoms. Furthermore, the fluid system studied in this paper was

designed to mathematically model mixing phenomena in a real, experimental microcavity mixer,

and the types of trajectories found responsible for mixing in our study could also be observed in a

physical realization of the system. In the Hénon map, the computation of multi-exponential decay

rates mimics general Hamiltonian systems where the phase space contains distinct resonance zones.

This introductory chapter is organized as follows. In Sects. 1.1-1.2.2 we introduce our methods

for computing symbolic dynamics from tangles. In Sect. 1.1, we introduce saddle points in phase

space and their stable and unstable manifolds. In Sect. 1.2, we demonstrate how the stable and

unstable manifolds of saddle points intersect each other and form what is called a heteroclinic tangle,

and we define a trellis which is used to approximate the heteroclinic tangle numerically. We then

demonstrate how symbolic dynamics can be computed from a heteroclinic tangle.

1.1 Saddle points in 2D maps and their stable and unstable

manifolds

In this manuscript, we study invertible maps of the plane. In 2D, we study a function that maps

a point in the plane (x, y) to another point in the plane (x′, y′), and the function can be denoted as

M : (x, y) ∈ R2 ⇒ (x′, y′) ∈ R2. When M is a discrete-time mapping, the second iterate of M

is M2 = M((M(x, y)) = M(x′, y′), and Mn can be defined for the map for any n ∈ Z, assuming

M is invertible for negative values of n. Initial points x, y acted on by the mapping iteratively can

be viewed as trajectories in time. The mapping could also be a continuous-time mapping, where M

is an evolution operator that can be denoted as Mt(x, y), where t ∈ R varies continuously, and x

and y vary continuously with t. Such mappings are ubiquitous in physics: any Hamiltonian system

of p degrees of freedom can be viewed as a mapping M in a 2p-dimensional space, the system’s

phase space. By viewing the system stroboscopically at only discrete values of time, i.e., using a

Poincaré surface-of section, one can view the system using only discrete-time, which reduces the

computational cost of analyzing the state space. A properly chosen Poincaré surface-of section
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can retain many important dynamical quantities of the full continuous-time system, and therefore

Poincaré surfaces-of-section are important for studying Hamiltonian dynamics using phase space

analysis.

We are particularly interested in deterministic mappings M where the system is chaotic, which

is more of a rule than an exception in Hamiltonian systems. The Poincaré conjecture states that the

domain of a chaotic system is densely populated with saddle points, which exist in both discrete-

and continuous-time mappings. What this means intuitively is that no matter where you are in a

chaotic region of phase space, there is a saddle point arbitrarily close to you. On the other hand, the

set of saddle points is measure zero, meaning it has zero volume. While the probability of a random

measurement landing on a saddle point is zero, the saddle points influence the entire phase space by

influencing the local areas near the saddle points. We harness this important result of chaos theory

in the subsequent chapters, and we demonstrate how the invariant manifolds of a few saddle points

can accurately compute the symbolic dynamics of the system, which can in turn be used to compute

transport rates.

The defining property of saddle points is that they have both stable and unstable directions, as

shown in Fig. 1.1. The stable manifold represents the backward-time dynamics of points beginning

arbitrarily close to the saddle point, and the unstable manifold represents the forward-time dynamics

of points beginning arbitrarily close to the saddle point. Stable and unstable manifolds of saddle

points are invariant, i.e. points on the stable manifold will always remain on the stable manifold, and

they map toward the saddle point going forward in time. Points on the unstable manifold will always

remain on the unstable manifold, and they map away from the saddle point going forward in time.

This invariant property is why stable and unstable manifolds are important geometric structures

for analyzing Hamiltonian phase spaces. As we will show, the invariant properties of stable and

unstable manifolds allow us to infer the structure of allowed trajectories in the system.

1.1.1 Computing stable and unstable manifolds numerically

When zooming arbitrarily close to the saddle point, the dynamics is described by the

linearization of M , denoted as J . The eigenvector associated with the larger eigenvalue J points

in the unstable direction and the eigenvector associated with the smaller eigenvalue of J points
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Figure 1.1. The saddle point (black) and its stable and unstable manifolds. The stable manifold (red)
represents the set of trajectories near the saddle point going backward in time. The unstable manifold (blue)
represents the set of trajectories near the saddle point going forward in time. Points along the stable manifold
map toward the saddle point going forward in time. Points along the unstable manifold map away from the
saddle point going forward in time.

in the stable eigendirection. The stable and unstable manifolds are computed using the following

steps. First, the saddle point is computed either analytically or using a Newton’s method solver.

Then, the linearization of the map J is computed, either analytically or using finite difference. The

eigenvalues and eigenvectors of the J are then computed. A large number of initial points are seeded

along the corresponding stable or unstable eigendirection, very close to the fixed point. To compute

the stable manifold, points are seeded along the stable direction and then propagated backward

in time. To compute the unstable manifold, points are seeded along the unstable direction and then

propagated forward in time. Once propagated, the points spread exponentially long and the manifold

becomes longer as more and more iterates are taken. In order to maintain sufficient sampling of the

manifold as the points spread apart, the manifold is interpolated and points are infilled at each step

in the areas having the highest curvature, this ensures that the point density along the manifold

remains adequate. The manifolds are used in the HLD technique, as we describe in Sect. 1.2.2. The

use of higher-order methods using Bézier curves [31] or an adaptive refinement technique [10] to

compute manifolds could lower the computational costs of computing the manifolds and could lead

to improvements on utilizing the HLD technique.



6

1.2 Heteroclinic tangles, trellises and symbolic dynamics

Figure 1.1 shows the zoomed-in picture of the saddle point. Zooming out results in a much

more complicated picture, shown in Fig. 1.2. The stable and unstable manifolds curve back and

intersect. A collection of stable and unstable manifolds and their intersections is called a homoclinic

or heteroclinic tangle. If the all the manifolds in the tangle are attached to the same fixed point,

the tangle is homoclinic, and if there are multiple fixed points whose manifolds are included, the

tangle is heteroclinic. The actual homoclinic or heteroclinic tangle is infinite in length and contains

infinitely many intersections, however a finite length computation of a heteroclinic tangle is shown

in Fig. 1.2. We denote a finite length computation of the heteroclinic tangle as a trellis. The trellis

is the object from which we extract the symbolic dynamics, as we develop in the rest of this section.

The intersections of the tangle encode information about the future dynamics of the system. An

intersection between the stable and unstable manifolds must map to an intersection since it must

remain on both stable and unstable manifolds. Furthermore, the iterate M(p) for an intersection

p must lie away from the fixed point along the stable manifold, and toward the fixed point along

the stable manifold. This implies that the unstable manifold, when computed to longer and longer

lengths, makes an infinite number of intersections with the stable manifold that progress closer

and closer to the fixed point in time. This is a universal trait maps containing stable and unstable

manifolds regardless of physical motivation. We will exploit such properties of heteroclinic tangles

in our exploration of fluid and atomic systems in Chapters 2-4.

The dynamics implied by heteroclinic intersections is a form of topological forcing. Topological

forcing can be applied to segments of the manifolds. A bridge is a segment of the unstable

manifold that begins and ends on the stable manifold, with no additional intersections with the

stable manifold. A bridge must either map to a bridge or a concatenation of bridges. We will

demonstrate how bridges map to bridges in a predictable manner. The bridges are classified based

on homotopy, which is how they wrap around holes. Holes are points in space which encode its

topology. Given a smooth, continuous change to the coordinate system, which can be viewed as

pulling or squeezing the stable and unstable manifolds, the manifolds will never pass through a

hole. Holes can be singularities, certain periodic orbits, or certain heteroclinic intersections. Once

a set of holes is chosen, the bridges can be divided up into bridge classes. A bridge class is a set of
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Figure 1.2. An outward zoom of Fig. 1.1. The stable and unstable manifolds curve back and intersect
themselves, forming a homoclinic tangle. As the manifold is computed longer and longer, there are an infinite
number of intersections. The structure of the intersections encodes the symbolic dynamics of the system, as
we develop in this section.

bridges with the same homotopy type, that is, a set of bridges that wrap around the same set of holes.

For example in Fig. 1.3c, the colored dots represent holes placed on a period-three orbit. The bridges

WU
[p1,q1] and WU

[q2,p1] are both bridges of class c, while the bridge that wraps around the blue hole

is of a different class, class b. As we will show in Sect. 1.2.1, once the bridges are divided up into

classes, we can compute what classes they map forward to in time. The set of bridge classes and

their allowed transitions can be represented by a directed graph and is called the system’s symbolic

dynamics. The symbolic dynamics consists of the set of bridge classes, the nodes, and the allowed

transitions between them, the edges. In Sect. 1.2.1 we will give an example of computing symbolic

dynamics with HLD by placing holes on a period-three orbit. In Sect. 1.2.2, we will show how to

systematically place holes on judiciously chosen heteroclinic orbits called pseudoneighbors.

1.2.1 Homotopy types using holes placed on periodic orbits

Consider the heteroclinic tangle shown in Fig. 1.3 (See Chapter 2 for the formulas and the

physical motivation for this system). Figure 1.3a shows the fluid flow in its original coordinates.

The unstable manifold coming from the top fixed point, denoted WU
zu

intersects the stable manifold
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coming from the bottom fixed point, denoted WS
zl

. The manifolds WU
zu

and WS
zl

and their

intersections are the heteroclinic tangle. We know a priori that there is a period three orbit labeled

ρ1, ρ2, and ρ3 with the following dynamics.

M(ρ1) = ρ2, M(ρ2) = ρ3, M(ρ3) = ρ1. (1.1)

We refer to these points as holes because as we will see, they can be used to classify the bridges and

predict how they map forward in time. Bridge a wraps around hole ρ2, bridge b wraps around hole

ρ1, and bridge c wraps around hole ρ3. As we continue to iterate the unstable manifold forward

in time, we will encounter bridges of these three types, however, additional bridges can appear

whose bridge classes are not yet realized. See Chapter 2 for the dynamics of this trellis for different

parameter values of the physical flow,

As we follow the unstable manifold coming from the top of Fig. 1.3, its intersections always

progress further and further down the stable manifold as the unstable manifold gets longer and

longer. This is because intersections that form later must be closer to the fixed point zl along the

stable manifold. The unstable bridge connecting p0 and q0, denoted WU
[p0,q0] maps to the unstable

bridge connecting p1 and q1, denoted WU
[p1,q1]. Therefore bridges of class a map to bridges of

class c, as shown in Fig. 1.4a. This property holds for all bridges of class a, i.e. bridges that

appear when the unstable manifold grows longer that wrap around hole ρ2. In Fig. 1.3 there

are two types of arrows. The unbarbed arrows represent the dynamical direction, the unstable

manifold progresses in time along this direction. The barbed arrows all point counter-clockwise

and represent the direction in which we define bridge classes. For example, any bridge wrapping

around hole ρ1 in the clockwise direction is denoted b, and any bridge wrapping around hole ρ1 in

the counter-clockwise direction is denoted b−1. The inverse bridge classes are important when we

look at how bridges of class b and c map forward. Bridges of type b and c do not map to bridges,

they map to a segment of unstable manifold that intersects the stable manifold in multiple places,

creating a concatenation of bridges. The bridge classes generated by mapping forward a bridge of

class b, for example, can be determined from the following “game.” Draw a curve from point p2 to

point q1, since those will be the end points of mapping forward the b bridge WU
[p1,q0]. The curve
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of course cannot have self-intersections, so there will be a unique curve generated by this game,

assuming one does not add extra oscillations in the curve that are not topologically forced. The

curve we imagine is drawn in Fig. 1.4b. The curve of type b maps to a curve that first wraps around

hole ρ1 in the clockwise direction, then around hole ρ2 in the clockwise direction, then comes back

around hole ρ1 in the counter-clockwise direction. The bridge generated is a concatenation of a

bridge of class b, a bridge of class a, and a bridge of class b−1, having an itinerary of bab−1. The

“game” of predicting the iteration of bridges can also be played for bridges of class c, shown in

Fig. 1.4c. The result of computing the forward iterate of each class a, b, and c yields the following

symbolic representation of the dynamics of this system

M(a) = c, (1.2a)

M(b) = bab−1, (1.2b)

M(c) = c−1bc. (1.2c)

This equation is an example of a system’s symbolic dynamics. Assuming that ρ1, ρ1, and ρ3 are the

only relevant holes in the system, this symbolic dynamics can be used to encode any trajectory in the

system, and is a very useful tool as we will develop in the rest of this manuscript. If our assumption

does not hold and more topologically relevant holes exist in the system, this will reveal itself as the

unstable manifold is computed longer and longer. Oscillations in the unstable manifold that are too

small to observe now, will be stretched out and form new intersections with the stable manifold.

These new intersections would then violate Eqs. 1.2, as new combinations of bridge classes will

appear, or new bridge classes will appear altogether. The symbolic dynamics we compute in Eqs. 1.2

is then a lower bound on the true symbolic dynamics. Associated with Eqs. 1.2 is a transition matrix

T:

T =


b c

b 2 0

c 0 2

. (1.3)

In this transition matrix, we do not distinguish between a class an its inverse, but we include a 2

in the transition matrix when a symbol and its inverse both appear in the itinerary of an iterated
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bridge class. This matrix holds important information about the dynamics of the system. The total

number of bridges of a certain class as a function of iterate n goes as Tn. An important theorem

known as the Frobinious-Perron theorem for positive, real matrices states that the growth rate of

the entries of Tn is equal to the natural log of the largest eigenvalue of T. Here, the matrix T is

the transition matrix of a dynamical system’s symbolic dynamics, and therefore this growth rate is

known as the topological entropy of the system. Roughly speaking, more topological entropy

means more chaos, and hence more “mixing.” We further discuss the symbolic dynamics and

topological entropy for a variety of trellises at different parameters of this fluid flow in Chapter 2.

The topological entropy can be physically interpreted as the stretching rate of the arc length of a

material line [60] in phase space. In addition to the stretching rate of a material line, topological

entropy equals the growth rate of the number of periodic orbits as a function of period [77] or the

maximum amount of information lost per unit time in a system using measurements with finite

precision [59]. Furthermore, topological entropy provides an upper bound on the metric entropy.

Practical applications of computing topological entropy include guiding the search of periodic

orbits [18], computing mixing rates in microfluidic mixers [5], extracting coherent structures in

fluid flows [2], and identifying global regions of high mixing from atmospheric velocity data [37].

We have now demonstrated how holes in phase space can topologically force a specific symbolic

dynamics on bridge classes, and that this symbolic dynamics can be used to compute a lower bound

on topological entropy. In the following section, we will demonstrate how to identify holes based

on the topology of the heteroclinic tangle itself in order to compute symbolic dynamics.

1.2.2 Homotopy types using holes placed on pseudoneighbors

In Sect. 1.2.1, we computed the symbolic dynamics based on the topological forcing of

holes placed on periodic orbits. Here, we will compute the symbolic dynamics based on the

topological forcing of holes placed on pseudoneighbors. We refer to this technique as homotopic

lobe dynamics (HLD). Here we make the important distinction between the heteroclinic tangle,

WU ∪WS , and the trellis, T = TU ∪ TS , where TU and TS represent the finite length segments

of the computed stable and unstable manifolds. The homotopic lobe dynamics technique takes in as

input a trellis T .
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Figure 1.3. The heteroclinic tangle generated from the fluid flow discussed in Chapter 2. The unbarbed
arrows represent the dynamical direction, or the direction on which time progresses along the unstable
manifold. This direction is also referred to as the dynamical direction. The barbed arrows represent the
direction on which the bridge classes are defined, which, in our convention is the clockwise direction. a) The
original physical coordinates of the fluid. The unstable manifold coming from the top fixed point intersects
the stable manifold coming from the bottom fixed point, forming the heteroclinic tangle. Shown using a
coordinate transformation, defined in Chapter 2. The fixed points are now at infinity, but the topologically
relevant part of the manifolds is shown. The points of the period three orbit labeled ρ1, ρ2, and ρ3 can be
viewed as holes in phase space and bridge classes a, b, and c are defined by which hole bridges wrap around.
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Figure 1.4. The iterates (green) of bridges from each class from Fig. 1.3 (blue). (a) The iterate of the bridge
of type a. (b) The iterate of the bridge of type b. (c) The iterate of the bridge of type c.
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Figure 1.5. A segment of a stable (red) and unstable (blue manifolds). The fixed points attached to the blue
manifold at the top of the figure (not shown, since the fixed point lies at infinity in this coordinate space. The
pseudoneighbors are shown as grey circles and are numbered based on their ordering, i.e. hole 0 maps to hole
1, and hole 1 maps to hole 2. Hole 3 lies between p1 and q1 and does not add any new active symbols to the
symbolic dynamics, and is therefore is not shown. The bridges are labeled by their bridge classes u0 and b.
The arrow defines the direction of the bridge class (always clockwise), the dynamical direction is away from
the top fixed point.

To define pseudoneighbors, We first construct the set X , which for general n contains all trellis

intersections TUn ∩ TS iterated forward and backward any number of times,

X = {Mk(x) | ∀x ∈ TUn ∩ TS , ∀k ∈ Z}. (1.4)

Figure 2.8 shows that, for n = 2, X is obtained by iterating the four points p0, q0, r0, and s0

forward and backward,

X = {pk,qk, rk, sk | ∀k ∈ Z}. (1.5)

We next determine the pseudoneighbors of the trellis. Two points x,x′ ∈ X are said to form

a pair of pseudoneighbors if there are no elements of X on either WU (x,x′) or WS(x,x′). In

Fig. 2.8, r0 and s0 are a pair of pseudoneighbors, as are any iterates rk and sk. Note that p1 and q1

do not form a pair of pseudoneighbors; even though there are no trellis intersections on the intervals
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WU (p1,q1) or WS(p1,q1), the points r1, s1 ∈ X lie on the interval WS(p1,q1). Similarly, q0

and p1 do not form a pair of pseudoneighbors since r−1, s−1 ∈ X lie on the interval WU (q0,p1).

Thus, rk and sk form the only pair of pseudoneighbor trajectories for T2.

In Sect. 2.4, we punched holes at each point of the period-three orbit ρi. For the trellis Tn we

instead punch holes adjacent to heteroclinic orbits. Specifically, for T2 we punch one hole for each

pair of pseudoneighbors rk and sk. This hole is placed within the region bounded byWU [rk, sk] and

WS [rk, sk], and infinitesimally close to either rk or sk; here, we choose rk. Specifically, Fig. 2.8

shows a hole (denoted by a shaded circle) adjacent to r0 and within the D-shaped region bounded

by WU [r0, s0] and WS [r0, s0]. In Fig. 2.8, we only plot the holes up to hole number 2, which is the

first hole to lie adjacent to TS . Note that an infinite number of holes actually line the right side of

TS , converging upon z` in the forward time direction. (In the uv-coordinates of Fig. 2.8, these holes

progress infinitely far downward.) Mapping hole 2 backward, it lies adjacent to the point r−1. The

point r−1 is not explicitly shown in Fig. 2.8, but it must lie on the bridge WU [q0,p1]. Furthermore,

hole 0 lies adjacent to point r−2, which lies on WU [zu,p0]. Similarly, an infinite number of holes

lie adjacent to WU [zu,p0], converging upon zu in the backward time direction (and progressing

infinitely far upward in Fig. 2.8.) However, in Fig. 2.8, we only plot the holes back to hole number

0, which is the first to lie adjacent to WU [zu,p0].

Note in Sect. 2.4 the holes were punched at exactly the period-three points ρi. Here, however,

the holes are infinitesimal perturbations from the heteroclinic points rk. Thus, we must use a

separate notation and separate labels for the holes than we use for the heteroclinic points.

The homotopy class of a bridge is now defined relative to the holes punched here, rather than

holes on the period-three orbit ρi. On the left side of TS in Fig. 2.8, there is a single bridge class

b, which by convention winds clockwise around hole 1. The symbol b is used for this bridge class

because b was used previously for the bridge class of WU [p1,q0] in Fig. 2.5. On the right side,

there is an infinite sequence of bridge classes uk, k ≥ 0, where uk winds clockwise around hole

2 + k.
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We next determine the dynamics on the bridge classes. Figure 2.8

shows that the bridge WU [p1,q0] is of class b and maps forward to

WU [p2,q1] = WU [p2, r0] ∪ WU [r0, s0] ∪ WU [s0,q1], whose homotopy class is bu0b
−1.

Thus,

M(b) = bu0b
−1. (1.6)

Refs. [53, 54] emphasize that the bridge dynamics should be represented by a concise product

of bridge classes. In the present case, a concise product is one in which the bridge classes alternate

between being on the left and right sides of TS . Since b is on the left and u0 is on the right, Eq. (2.14)

is indeed concise.

Next, Figure 2.8 shows thatWU [p0,q0] is a bridge of class u0 that maps forward toWU [p1,q1],

which is of class u1. More generally,

M(uk) = uk+1. (1.7)

All the classes uk are said to be inert because the forward iterate of any one of them never generates

more than one bridge class, no matter how many times it is iterated; we call u0 the primary inert

class. On the other hand b is said to be active because its forward iterate is the product of three

bridge classes. We will always denote active classes by a, b, and c, and inert classes by u and v.

We will also denote types of bridge classes by an index such as uk, which represents the set of inert

bridge classes of type u.

The dynamics of the inert classes contribute nothing to the topological entropy. Thus, we restrict

the transition matrix T to the active classes. Since the present case has only a single active class b

that maps to two copies of itself, we find

T = [2]. (1.8)

We further discuss the symbolic dynamics and topological entropy for a variety of trellises at

different parameters of this fluid flow in Chapter 2.
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1.3 Summary of manuscript

This manuscript is organized as follows. In Chapter 2 we introduce our first physical application

of HLD, a chaotic 2D double-gyre cavity flow, for which we compute topological entropy over a

range of parameter value by computing symbolic dynamics using HLD. We compare our result

to previously computed data using braiding theory and almost-cyclic sets, and find that the HLD

method can explain topological entropy that is left unexplained by previous studies of topological

entropy in the system. In Chapter 3 we compute periodic orbits for a 2D chaotic analytic map, the

Hénon map. We compute the decay rate over hyperbolic plateaus, which are ranges of parameter

where the symbolic dynamics does not change. We also compute multiple distinct decay rates for

a parameter value exhibiting multiexponential decay, providing the first successful application of

periodic orbit theory to computing multi-exponential decay rates in maps. We compare our results

using periodic orbits to Monte Carlo computations of escape and find good agreement. In Chapter. 4

we apply HLD to an atomic scattering problem, the hydrogen atom in parallel electric and magnetic

fields. Using HLD, a hyperbolic plateau is are identified, and its symbolic dynamics is computed.

The periodic orbits and decay rates are then computed from the symbolic dynamics, and the decay

rate is computed from the periodic orbits over a range of initial electron energy value. The decay

rate computed from periodic orbits matches Monte Carlo, demonstrating that periodic orbit theory

can be used for realistic physical chaotic systems. The computation of periodic orbits in this system

will lead to future work in studying quantum resonances.



Chapter 2

Computing topological entropy in a

chaotic 2D cavity flow

2.1 Introduction

We begin our journey into applications of HLD by computing topological entropy of fluid

systems at very low Reynolds number, i.e. in the Stokes regime. Understanding mixing in such

flows has many physical applications ranging from microfluidics [68] to oceanic and atmospheric

circulation [37, 74]. We focus specifically on flows in which the fluid velocity field is periodic in

time, which means that the dynamics of passive tracers in the fluid exhibit chaotic trajectories. The

amount of chaos in the tracer dynamics can be quantified through the topological entropy. In a

compact 2D phase space which is not necessarily area-preserving, topological entropy is equal to

the exponential stretching rate of a material line embedded in the fluid [59] governed by

L(t) = L0e
ht, (2.1)

where h is the topological entropy, L0 is the initial line length, and L(t) is the length of the line at

time t.

Roughly speaking, more topological entropy means more chaos, and hence more “mixing.”

In addition to the stretching rate of a material line, topological entropy equals the growth rate of

17
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periodic orbits as a function of period [77] or the maximum amount of information lost per unit

time in a system using measurements with finite precision [59]. Furthermore, topological entropy

provides an upper bound on the metric entropy. Practical applications of computing topological

entropy include guiding the search of periodic orbits [18], computing mixing rates in microfluidic

mixers [5], extracting coherent structures in fluid flows [2], and identifying global regions of high

mixing from atmospheric velocity data [37].

The important question we address is What is the origin of topological entropy? Much like

how Li and Yorke [48] showed that for interval maps the existence of a period-three orbit implies

the existence of orbits with arbitrary period, whose growth rate is bounded below by a minimum

topological entropy, we study chaos through the existence of certain topological structures that are

“responsible” for the topological entropy. More specifically, the presence of some structures implies

a certain minimum amount of topological entropy. We seek those structures that give us the best

lower bound.

A recent approach to explaining topological entropy in a fluid flow is to associate the topological

entropy with periodic orbits, i.e. the presence of a given periodic orbit of a passive tracer implies

a minimum topological entropy for the flow [2, 7–9, 73]. Such a periodic orbit may be imposed

externally on the fluid by stirring the fluid with rods following the periodic trajectory [7, 8].

Alternatively, a periodic tracer orbit may already exist within a fluid driven by some other means,

and one may imagine virtual, or “ghost,” rods following this orbit; for example, it is particularly

natural to consider ghost rods placed at stable orbits within a periodic island chain [32, 67, 73, 74].

The topological entropy of the fluid flow implied by the ghost rods is exactly the same as the

topological entropy implied by actual stirring rods. All that matters is the presence of the orbit

in the flow.

The method of ghost rods was applied by Grover et al. [33, 69] to the “lid-driven” cavity flow,

a chaotic 2D double-vortex flow. The flow depends on the driving period τf , which can be varied.

Grover et al. found that over a particular range of τf a period-three orbit produced most of the

topological entropy. However, outside this range either the periodic orbit did not exist or the orbit

existed but the topological entropy significantly exceeded that of the orbit. Grover et al., examining

the former case, accounted for the topological entropy when the period-three orbit did not exist
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through the presence of almost cyclic sets [1,26,28,29]. Such sets are nearly coherent regions of the

fluid that are advected in a nearly periodic fashion. They were discovered through an analysis of the

Frobinous-Perron operator. Even though no periodic orbits where shown to exist within the almost

cyclic sets, the topological entropy of the nearly periodic motion of the sets, viewed as though they

were true periodic orbits, nevertheless generated a lower bound to the topological entropy of the fluid

flow. Furthermore, this bound was tight for the lowest τf value for which particular almost-cyclic

sets existed, but excess topological entropy, not explained by the almost-cyclic sets, was found for

higher values of τf . The origin of this excess topological entropy remained unexplained.

In this paper, we propose another technique for explaining the topological entropy of the

lid-driven flow, namely through heteroclinic orbits that connect two fixed points on the boundary of

the fluid cavity. (Note that “fixed point” throughout the text refers to period-one orbits, i.e. fixed

points of the flow map, and not points of zero velocity of the fluid flow.) These heteroclinic orbits

persist even for lower values of τf where the period-three orbit fails to exist. In fact, they persist all

the way down to τf = 0. Like periodic orbits, heteroclinic orbits also have an associated topological

entropy that provides a lower bound to the topological entropy of the fluid flow that contains the

orbit. Roughly speaking, the heteroclinic orbits that we consider are “remnants” of the period-three

orbit that exists at higher τf values. We compute the topological entropy from these heteroclinic

orbits using the technique of homotopic lobe dynamics [52–55] (HLD). In general, HLD extracts

symbolic dynamics from a tangle, i.e., transversely intersecting stable and unstable manifolds

attached to unstable periodic orbits. The HLD technique proceeds by placing holes at certain

tangle intersections, which we call pseudoneighbor orbits in Sect. 2.5. Segments of the unstable

manifold are classified by how they “wrap around” the holes, i.e. by their homotopy classes. The

forward evolution of the holes induces a dynamics on the homotopy classes, which can be expressed

in symbolic form. Thus the pseudoneighbor orbits force a certain symbolic representation of the

dynamics. This symbolic dynamics in turn yields a lower bound on the topological entropy of the

system. For other approaches to the symbolic dynamics of tangles, see Refs. [11–15,22,23,64,65].

In summary, we explain the topological entropy of the fluid flow in terms of stirring by “ghost

rods” attached to heteroclinic orbits. Using this approach, we construct a tight lower bound on the

topological entropy for a large interval over which the period-three orbit fails to exist. For τf values
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for which the period-three orbit does exist, we use heteroclinic orbits to explain some of the excess

topological entropy above that predicted by the period-three orbit.

Finally, we note that the topological methods used in this work, specifically the HLD technique,

do not require a map defined by a fluid flow nor do they require area-preservation. Our purpose is

to explicitly demonstrate how the HLD technique can offer insight into fluid flows and to compare

to the results of Grover et. al [33,69] specifically. More broadly, we wish to draw parallels between

our approach and the literature on “stirring” by ghost rods [2, 32, 67, 73, 74].

This paper is organized as follows. Section 2.2 introduces the chaotic cavity flow. Section 2.3

details the direct numerical method of computing topological entropy via the stretching rate

Eq. (2.1). Section 2.4 introduces the HLD technique in the context of the period-three orbit,

giving us the topological entropy for this orbit. Section 2.5 analyzes the symbolic dynamics of the

heteroclinic tangle generated by the period-three orbit. In this manner we compute the topological

entropy for heteroclinic orbits that are topologically forced to exist by the period-three orbit, but

that persist for τf values where the period-three orbit has vanished. These heteroclinic orbits can

be viewed as a kind of “remnant” of the period-three orbit. We work out the symbolic dynamics

explicitly using longer and longer finite-length intervals of the unstable manifold, thereby including

information about more and more complex heteroclinic orbits. These intervals are generated by

iterating an initial length of the manifold forward n times. After discussing the cases n = 1, 2, 3, 4, 5

in Sects. 2.5.2-2.5.5, we give the general formulation in Sects. 2.5.6-2.5.8. Section 2.6 applies

these results to the τf values where the period-three orbit does not exist. Section 2.7 uses an

automated algorithm to apply the HLD technique to thousands of numerically computed pieces

of the unstable manifold, which are chosen to fill in the fluid cavity up to a given area resolution.

This symbolic dynamics yields our tightest lower bound on the topological entropy over the range

of τf studied. Section 2.8 compares our results to the previous work using almost-cyclic sets by

Grover et al [33, 69].
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2.2 A chaotic time-periodic two-dimensional cavity flow

The chaotic time-periodic lid-driven cavity flow used here was used previously in Refs. [33,63,

69] to study chaotic advection. It has been physically motivated through studies of the staggered

herringbone mixer [70, 71] for low Reynolds numbers, and may find application in the design

of microfluidic mixers. The flow is two-dimensional and area preserving, being defined over a

2D vertical cross-section of a rectangular cavity. The cavity cross-section extends vertically from

−b ≤ y ≤ b and horizontally from 0 ≤ x ≤ a. The flow does not depend on the second horizontal

coordinate z, nor is there a component of the fluid velocity in the z-direction. The two-dimensional

flow u in the xy-plane is thus given by a stream function ψ(x, y, t) according to

u(x, y, t) =
(
∂ψ

∂y
,−∂ψ

∂x

)
. (2.2)

The specific stream function used in Refs. [33, 63, 69] was derived as the exact solution to the

biharmonic equation [51] ∇2∇2ψ = 0 (a consequence of the Stokes-flow assumption) with

time-periodic boundary conditions on the top (y = b) and bottom (y = −b) of the cavity (hence the

name “lid-driven”). See Refs. [33,63,69] for details of the derivation. The resulting stream function

is periodic in time with period τf . Over the first half-period, the stream function is constant in time

with value

ψ(x, y) = U1C1f1(y) sin
(
πx

a

)
+ U2C2f2(y) sin

(2πx
a

)
. (2.3)

Over the second half-period, the stream function is again constant in time with value

ψ(x, y) = −U1C1f1(y) sin
(
πx

a

)
+ U2C2f2(y) sin

(2πx
a

)
. (2.4)

Here

fk(y) =2πy
a

cosh
(
kπb

a

)
sinh

(
kπy

a

)
− 2πb

a
sinh

(
kπb

a

)
cosh

(
kπy

a

)
, k = 1, 2, (2.5)
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Figure 2.1. Streamlines given by the streamfunctions (a) Eq. (2.3) and (b) Eq. (2.4).

and

Ck = a2

2kπ2b

[
a

2kπb sinh
(2kπb

a

)
+ 1

]−1
, k = 1, 2. (2.6)

Following Grover et al [33], we use the following constants throughout this paper 1: U1 = 9.9279,

U2 = 8.3523, a = 6, b = 1. The driving period τf is varied in our analysis.

Figure 2.1 shows the streamlines for the two constant flows Eq. (2.3) and (2.4). Each flow is

asymmetric in x, with a large vortex on one side and a small vortex on the other. Though each flow

is separately integrable, blinking between the two flows introduces chaos. We define M to be the

flow map that evolves a point (x, y) forward to the point (x′, y′) = M(x, y) after one period τf .

For τf ≥ τ∗f = 0.9553, M contains a period-three orbit ρi, i = 1, 2, 3, with nontrivial braiding,

M(ρ1) = ρ2, M(ρ2) = ρ3, M(ρ3) = ρ1. (2.7)

Following Grover et al [33], we introduce the rescaled period τ̄f = τf/τ
∗
f , so that the period-three

orbit is born at τ̄f = 1. 2 Figure 2.2a shows the points ρi along with their time evolution ρi(t)
1This U1 value is used for all the results in this paper as well as in [33]; Ref. [33] does not state the correct U1 value

used.
2This scaling of τf is not explicitly defined in Ref. [33], but was privately communicated to us by the authors.
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Figure 2.2. Trajectory of the period-three orbit in the model flow viewed in a) the xy space from above the
xy plane and b) the xt space.

over one period, i.e. 0 ≤ t ≤ τf . Roughly speaking, one can understand the orbit dynamics as

follows. In the first half-period, the left two trajectories swap places in a clockwise fashion, and in

the second half-period the right two swap places in a counter-clockwise fashion. This can be seen

clearly in Fig. 2.2b which shows the trajectories in xt-space. Thinking of the trajectories in the full

xyt-space, they can be viewed as a set of three strands braiding around one another and connecting

the top (t = 0) to the bottom (t = τf ). The presence of this braid alone in the dynamics implies a

lower bound hpo3 = ln
(
3 +
√

5
)

= 0.9624 on the true topological entropy of the fluid flow. This

is the perspective adopted in Refs. [6–8], where the topological entropy of the braid is computed

using the Bestvina-Handel algorithm [4]. A central question of this paper, as well as of Grover et

al. [33, 63, 69], is how to explain the topological entropy when either ρi does not exist or when ρi

does exist but the entropy significantly exceeds hpo3.



24

2.3 Direct computation of the topological entropy via the

stretching rate

The topological entropy can be computed directly from Eq. (2.1) using the following method

originally proposed by Newhouse et al. [59].

1) Choose an initial material line within the fluid domain. We use the horizontal line extending

from x = ε, y = 0 to x = 6 − ε, y = 0, with ε = 10−5. (The small quantity ε is used to

avoid any potential numerical error that would cause the material line to exit the cavity.) This

choice of initial line was found to adequately intersect the most stretching regions of phase

space, leading to small transients and quick exponential growth.

2) Use the flow map M to numerically evolve the initial line forward until transients have

decayed and the length L(t) grows exponentially with iterate number. Here, we iterate

the initial segment nine times. When evolving the line forward, it is important to infill

the line with interpolated points as the point separation becomes too great. We use linear

interpolation; though less accurate than higher order schemes, it has the advantage of never

placing an interpolated point outside the cavity.

3) Fit an exponential function to the asymptotic growth of L(t) according to Eq. (2.1). Here, the

fitting is done using the points from t = 3 to t = 9. An example of L(t) along with its fitting

function is shown in Fig. 2.3.

Although other methods for computing topological entropy numerically exist, for example,

constructing a Markov chain using finite partitions [27]. We have chosen the method described

above because it is the more familiar method for 2D flows, and was used previously for this same

flow by Grover et. al [33, 69].

Figure 2.4 shows the direct stretching computation of topological entropy h for τ̄f in the

range [0.8374, 1.099]. An alternative way to compute topological entropy numerically is by

approximating the symbolic dynamics using finite partitions [27].
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Figure 2.3. The length of an advected material line as a function of iterate, along with the corresponding
fitting function for τ̄f = 0.9945. The topological entropy computed from this fit is 0.9626± 0.0008.
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Figure 2.4. The direct computation of topological entropy as a function of driving period. Error bounds are
95% confidence intervals computed from the exponential fit. The period-three orbit exists for values of τ̄f

greater than 1, i.e. right of the green vertical line. The horizontal black line marks the topological entropy
hpo3 = ln

(
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√
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)

= 0.9624 of the period-three orbit.
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2.4 A tangle analysis of the topological dynamics generated by

the period-three orbit

This section derives the symbolic dynamics and computes the topological entropy generated

by the period-three orbit, using the homotopic lobe dynamics technique [53, 54]. Previously, it

has been common to use the Bestvina-Handel algorithm to compute the topological entropy of the

period-three orbit. [4, 8, 32]. The HLD technique requires a tangle as its starting point. We choose

the heteroclinic tangle attached to the two hyperbolic fixed points zu and z` that lie on the upper and

lower boundaries of the fluid domain, respectively, Fig. 2.5. The stable and unstable manifolds are

computed using an algorithm similar to Yorke et. al [76]. The initial segment is chosen as a small

line along the eigenvector of the fixed point, and it is iterated forward by integrating the flow mapM

along the respective points. In order to maintain accuracy while exponentially growing the manifold,

interpolated points are inserted at each iterate to maintain sufficient density. The unstable manifold

WU
zu

lies within the fluid domain and is attached to the upper fixed point zu; the stable manifolds of

zu lie on the fluid boundary and do not concern us. Similarly, the stable manifold WS
z`

lies within

the fluid domain and is attached to the lower fixed point z`; again, we are not concerned with the

unstable manifold of z` on the fluid boundary. Points on the unstable manifoldWU
zu

map away from

zu, while points on the stable manifold WS
z`

map toward z`. This dynamical direction is denoted

by a triangular arrow in Fig. 2.5 (in contrast to the barbed arrows used below for the homotopy

direction.) The stable and unstable manifolds WS
z`

and WU
zu

intersect at a primary intersection point

(pip) p0; a pip p0 is an intersection point such that WS
z`

[z`,p0) ∩WU
zu

[zu,p0) = ∅ [22, 23]. Note

that the pip q0, or any iterate of p0 or q0 could in principle also be used.

Figure 2.5a shows the (infinitely-long) stable manifold WS
z`

only up to the pip p0, but shows

the (infinitely-long) unstable manifold WU
zu

beyond the p0 intersection. The unstable manifold

has several oscillations that quickly press against the lower fluid boundary, making it hard to

visualize the manifold topology. It is helpful, therefore, to view the manifolds in the transformed

log-coordinates

u = ln(x)− ln(6− x), (2.8a)
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Figure 2.5. Computation of the trellis for τ̄f = 1.057. The stable and unstable manifolds WS
z`

and WU
zu

are
computed long enough to identify the three bridge classes a, b, and c defined by the period-three orbit. a)
Trellis in the original rectangular co-ordinates. b) Trellis in the log co-ordinates defined by Eqs. (2.8).
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Figure 2.6. The iterates (in green) of the bridge classes a, b, and c (in blue) for τ̄f = 1.057 in the log space.
The decomposition of each iterate into bridge classes is also shown.



29

v = ln(y + 1)− ln(1− y). (2.8b)

These coordinates map the boundary of the fluid domain to infinity and spread the manifold

oscillations apart, as shown in Fig. 2.5b. This figure shows that WU
zu

is plotted up to point

q1 = M(q0), where q0 is the pip between p0 and p1 = M(p0). In general, we use the notation

that for any heteroclinic orbit xi, i records its iterate, i.e. xi+1 = M(xi).

A bridge is a segment of WU
zu

that begins and ends on the stable segment WS
z`

[z`,p0] without

otherwise intersecting this stable segment. In order to obtain the symbolic dynamics of the

period-three orbit, we classify bridges by how they wind around the period-three points, or “stirring

rods”, ρ1, ρ2, and ρ3. As shown in Fig. 2.5b, a bridge of class a winds clockwise around rod

ρ2, a bridge of class b winds clockwise around rod ρ3, and a bridge of class c winds clockwise

around rod ρ1. Mathematically, we punch “holes” in the plane at the periodic points ρ1, ρ2, and ρ3,

and view a, b, and c as the homotopy classes of bridges relative to the starting and ending segment

WS
z`

[z`,p0]. We shall consider the periodic points as holes or rods interchangeably, depending on

context. In general, the homotopy class of a path P , with endpoints on WS
z`

[z`,p0], consists of all

those paths that can be continuously distorted from P without passing through a hole and without

the endpoints leavingWS
z`

[z`,p0]. The homotopy classes a, b, and c are special because they are the

classes of bridges; we call a, b, and c bridge classes. The direction of a bridge class is denoted by

a barbed arrow on the unstable manifold (Fig. 2.5), in contrast to the dynamical direction denoted

by an unbarbed (triangular) arrow. Note that the HLD analysis in this section differs in one crucial

respect from the development of HLD in Refs. [53, 54]; in these references holes were punched

along heteroclinic orbits (See Sect. 2.5B-2.5H) rather than periodic orbits.
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Physically, as the rods undergo one stirring period, the bridges within each class are stretched

and folded, becoming new segments of the unstable manifold. These new segments are typically

not bridges, but since they still begin and end on WS
z`

[z`,p0], each can be decomposed into a

concatenation of bridges. At the level of homotopy, the homotopy class of such a new segment can

be decomposed into a product of bridge classes. Figure 2.6 shows representative bridges from each

of the three bridge classes and their iterates. The decomposition of each iterate into bridge classes

is also shown, yielding the bridge dynamics

M(a) = c, (2.9a)

M(b) = bab−1, (2.9b)

M(c) = c−1bc. (2.9c)

The topology of the iterates shown in Fig. 2.6 can be determined either from a direct numerical

computation of the iterates, as shown, or from just the bridges shown in Fig. 2.5b together with

Eq. (2.7). Following the latter approach, the topology of M(b) in Fig. 2.6b, for example, can be

determined from the following “game”. Draw a curve from point p2 to point q1 (since there is

a curve of class b connecting p1 to q0) such that it does not self-intersect or intersect any other

unstable segment in Fig. 2.5b and such that it wraps clockwise once around hole ρ3 (since b wraps

clockwise once around hole ρ1.) It is straightforward to see that the solution curve has the unique

homotopy class given by Eq. (2.9b). The reader is invited to play this game for classes a and c as

well.

We define the transition matrix T as the matrix whose component Tij records the number

of times bridge class si, or its inverse s−1
i , appears in the iterate of bridge class sj , where

si, sj ∈ {a, b, c}. Equations (2.9) imply

T =



a b c

a 0 1 0

b 0 2 1

c 1 0 2

. (2.10)
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The log of the largest eigenvalue of T is the topological entropy of the symbolic dynamics Eqs. (2.9),

or equivalently of the period-three orbit ρi.

hpo3 = ln
(
3 +
√

5
)

= 0.9624. (2.11)

This is the same as the topological entropy of the period-three braid computed from the

Bestvina-Handel algorithm [4]. It is a lower bound to the topological entropy of the fluid flow

M for any parameter value τf in which the period-three orbit exists.

2.5 A tangle analysis of the topological dynamics generated by

heteroclinic orbits

As seen in Fig. 2.4, the period-three orbit ρi fails to exist below τ̄f = 1. 3 How then are we to

understand the origin of the topological entropy in this case? How can we place a lower bound on the

topological entropy of the fluid flow? One possibility derives from the fact that the hyperbolic fixed

points zu and z`, and their associated stable and unstable manifolds, persist down to τ̄f = 0. This

can be shown by noticing that both stream functions Eq. (2.3) and Eq. (2.4) have four hyperbolic

fixed points at the corners of the rectangular domain. Any dynamics generated by the switching

between the two stream functions must also have the same fixed points with the same stable and

unstable directions. For example, the top left fixed point has an unstable direction pointing to the

right and the top right fixed point has an unstable direction pointing to the left. (See Fig. 2.1.) It is

then necessary that a fixed point zu lies between these two points with its stable direction along the

boundary, and an unstable direction pointing downward into the domain. Similarly, for all τ̄f there

must exist a fixed point z` on the bottom boundary with a stable direction pointing upward into the

domain.

As with periodic orbits, the heteroclinic intersections between the stable and unstable manifolds

attached to z` and zu, respectively, also generate topological entropy [11–15,53,54]. In this section,

we compute the topological entropy forced by heteroclinic intersections arising from the dynamics
3Other period-three orbits exist below τ̄f = 1; for example, two period-three orbits persist on the right side and two

period-three orbits persist on the left side. However, these orbits have smaller topological entropy.
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in Eq. (2.9). More precisely, we consider finite-length pieces of the unstable manifold forced by

the dynamics of Eq. (2.9). These pieces have the fewest intersections consistent with Eq. (2.9), i.e.

there are no additional unforced intersections. We then forget about the period-three orbit ρi itself

and compute symbolic dynamics based solely on the finite-length pieces and their intersections with

the stable manifold. The resulting topological entropy will be less than that of the period-three orbit.

The period-three topological entropy is only recovered in the limit of using infinitely long pieces

of unstable manifold. Finally, we are not trying to exactly reproduce the trellis for a particular τ̄f

value. We are constructing a trellis with minimal complexity consistent with the presence of the

period-three orbit.

We examine the development of the tangle by iterating the fundamental segment

U0 = WU [p−1,p0] forward n times. We go up to n = 5 because this is sufficient to illustrate

the general pattern, which we then work out explicitly for the cases n = 3k − 1, 3k, and 3k + 1.

Progressing through the cases n = 1 to n = 5 also allows us to review the HLD technique through

a series of examples of increasing complexity. The particular analysis in Sects. 2.5.1- 2.5.8 applies

in general when you have the period-three braid applied to a phase space exhibiting topology in

Fig. 2.7. The following sections rely heavily on the HLD technique; for complete details on the

HLD technique see Refs. [53, 54].

2.5.1 The development of the trellis at n = 1

At n = 1, the unstable manifold is computed up to p1 as shown in Fig. 2.7. This segment is

the union of the segment WU [zu,p0], connecting the fixed point (not shown) to the pip, with the

segment U1 = M(U0) = WU [p0,p1]. We use the term trellis for the finite intervals of the stable

and unstable manifolds that are computed and used for our topological analysis. The unstable and

stable components of the trellis Tn are denoted TUn and TS , respectively. (The stable component

TS will not change with n.) At n = 1, TU1 = WU [zu,p1] and TS = WS [z`,p0]. The unstable

trellis TU1 contains two bridges, WU [p0,q0] and WU [q0,p1]. By a classic result of Smale [66], the

transverse intersections p0 and q0 seen in the trellis guarantee a nonzero topological entropy for the

mapM . This is because each of the two bridges will eventually develop additional intersections with

TS when they are iterated forward, ultimately resulting in an exponential explosion of intersections,



33

Figure 2.7. The trellis at n = 1 in the log space.

with the topological entropy being the growth rate of the intersections. However, the trellis

itself does not contain enough information to determine how many iterates it will take to develop

additional intersections or what the corresponding growth rate will be. As a consequence, the trellis

at n = 1 yields a lower bound of zero on the topological entropy of the fluid flow M .

2.5.2 The development of the trellis at n = 2

At n = 2, the trellis now includes the second iterate U2 of the fundamental segment. In order

to determine the structure of the trellis at n = 2, we apply the dynamics of Eqs. (2.9) to the two

segments WU [q0,p0] and WU [p1,q0] from the trellis at n = 1. The left segment WU [p1,q0]

is a curve of class b in Fig. 2.5, and thus maps forward to a curve of class bab−1 according to

Eq. (2.9b) and shown in Fig. 2.6b. Therefore, the curve WU [p2,q1] has the structure shown in

Fig. 2.8, with two new secondary intersections r0 and s0 with TS . Likewise, the right segment

WU [q0,p0] from the trellis at n = 1 is a curve of class a in Fig. 2.5, and thus maps forward to

a curve of class c according to Eq. (2.9a) and shown in Fig. 2.6a. Therefore, WU [q1,p1] has no

additional intersections with TS beyond its endpoints. We have thus determined the structure of the

trellis TU2 = WU [zu,p2] shown in Fig. 2.8. The stable trellis TS is the same as n = 1. The new

intersections r0 and s0 yield a nonzero lower bound on the topological entropy of M , as we now

show.
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Figure 2.8. Development of the trellis at n = 2, drawn schematically rather than computed numerically to
better visualize the topology. Arrows represent the direction of the bridge classes.

We outline here the homotopic lobe dynamics technique applied to the trellis T2 in Fig. 2.8.

We first construct the set X , which for general n contains all trellis intersections TUn ∩ TS iterated

forward and backward any number of times,

X = {Mk(x) | ∀x ∈ TUn ∩ TS , ∀k ∈ Z}. (2.12)

Figure 2.8 shows that, for n = 2, X is obtained by iterating the four points p0, q0, r0, and s0

forward and backward,

X = {pk,qk, rk, sk | ∀k ∈ Z}. (2.13)
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We next determine the pseudoneighbors of the trellis. Two points x,x′ ∈ X are said to form

a pair of pseudoneighbors if there are no elements of X on either WU (x,x′) or WS(x,x′). In

Fig. 2.8, r0 and s0 are a pair of pseudoneighbors, as are any iterates rk and sk. Note that p1 and q1

do not form a pair of pseudoneighbors; even though there are no trellis intersections on the intervals

WU (p1,q1) or WS(p1,q1), the points r1, s1 ∈ X lie on the interval WS(p1,q1). Similarly, q0

and p1 do not form a pair of pseudoneighbors since r−1, s−1 ∈ X lie on the interval WU (q0,p1).

Thus, rk and sk form the only pair of pseudoneighbor trajectories for T2.

In Sect. 2.4, we punched holes at each point of the period-three orbit ρi. For the trellis Tn we

instead punch holes adjacent to heteroclinic orbits. Specifically, for T2 we punch one hole for each

pair of pseudoneighbors rk and sk. This hole is placed within the region bounded byWU [rk, sk] and

WS [rk, sk], and infinitesimally close to either rk or sk; here, we choose rk. Specifically, Fig. 2.8

shows a hole (denoted by a shaded circle) adjacent to r0 and within the D-shaped region bounded

by WU [r0, s0] and WS [r0, s0]. In Fig. 2.8, we only plot the holes up to hole number 2, which is the

first hole to lie adjacent to TS . Note that an infinite number of holes actually line the right side of

TS , converging upon z` in the forward time direction. (In the uv-coordinates of Fig. 2.8, these holes

progress infinitely far downward.) Mapping hole 2 backward, it lies adjacent to the point r−1. The

point r−1 is not explicitly shown in Fig. 2.8, but it must lie on the bridge WU [q0,p1]. Furthermore,

hole 0 lies adjacent to point r−2, which lies on WU [zu,p0]. Similarly, an infinite number of holes

lie adjacent to WU [zu,p0], converging upon zu in the backward time direction (and progressing

infinitely far upward in Fig. 2.8.) However, in Fig. 2.8, we only plot the holes back to hole number

0, which is the first to lie adjacent to WU [zu,p0].

Note in Sect. 2.4 the holes were punched at exactly the period-three points ρi. Here, however,

the holes are infinitesimal perturbations from the heteroclinic points rk. Thus, we must use a

separate notation and separate labels for the holes than we use for the heteroclinic points.
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The homotopy class of a bridge is now defined relative to the holes punched here, rather than

holes on the period-three orbit ρi. On the left side of TS in Fig. 2.8, there is a single bridge class

b, which by convention winds clockwise around hole 1. The symbol b is used for this bridge class

because b was used previously for the bridge class of WU [p1,q0] in Fig. 2.5. On the right side,

there is an infinite sequence of bridge classes uk, k ≥ 0, where uk winds clockwise around hole

2 + k.

We next determine the dynamics on the bridge classes. Figure 2.8

shows that the bridge WU [p1,q0] is of class b and maps forward to

WU [p2,q1] = WU [p2, r0] ∪ WU [r0, s0] ∪ WU [s0,q1], whose homotopy class is bu0b
−1.

Thus,

M(b) = bu0b
−1. (2.14)

Refs. [53, 54] emphasize that the bridge dynamics should be represented by a concise product of

bridge classes. In the present case, a concise product is one in which the bridge classes alternate

between being on the left and right sides of TS . Since b is on the left and u0 is on the right, Eq. (2.14)

is indeed concise.

Next, Figure 2.8 shows thatWU [p0,q0] is a bridge of class u0 that maps forward toWU [p1,q1],

which is of class u1. More generally,

M(uk) = uk+1. (2.15)

All the classes uk are said to be inert because the forward iterate of any one of them never generates

more than one bridge class, no matter how many times it is iterated; we call u0 the primary inert

class. On the other hand b is said to be active because its forward iterate is the product of three

bridge classes. We will always denote active classes by a, b, and c, and inert classes by u and v.

We will also denote types of bridge classes by an index such as uk, which represents the set of inert

bridge classes of type u.

The dynamics of the inert classes contribute nothing to the topological entropy. Thus, we restrict

the transition matrix T to the active classes. Since the present case has only a single active class b
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that maps to two copies of itself, we find

T = [2]. (2.16)

The topological entropy of the trellis T2, i.e. of Eq. (2.14), thus equals

h2 = ln 2 = 0.6931. (2.17)

This topological entropy is a lower bound for the topological entropy of the fluid flow M . Note that

h2 = 0.6931 is less than the entropy hpo3 = 0.9624 of the period-three orbit ρi itself, as it must be,

since T2 is only part of the full tangle generated by ρi.

2.5.3 The development of the trellis at n = 3

If we followed the pattern established in Sects. 2.5.1 and 2.5.2 at n = 3, the trellis T3 would

include the third iterate U3 = M3(U0) of the fundamental segment U0 = WU [p−1,p0]. However,

U3 contains so many new bridges (ten) that the figure of the trellis would become crowded and hard

to visually analyze. More importantly, the majority of these new bridges result from the topological

constraints already established by T2 and provide no new topological information. Specifically, U2

in Fig. 2.8 contains the two bridges WU [q1, s0] and WU [p2, r0] of class b, and these bridges map

forward into three new bridges each, exactly as predicted by Eq. (2.14). On the other hand, U2 also

contains the two inert bridges (i.e. bridges with an inert class)WU [r0, s0] andWU [p1,q1]. Though

the iterates of these bridges are not forced by the topology of T2 to produce any new intersections,

they do in fact produce new intersections when analyzed in the context of Fig. 2.5 and Eqs. (2.9).

Thus, we construct the trellis T3 by adding to T2 those bridges (and only those bridges) that result

from mapping forward the inert bridges in U2. This is how we shall proceed from now on, i.e. TUn+1

will be the union of TUn and the forward iterate of the inert bridges from TUn ∩Un. Mapping forward

the inert bridges WU [r0, s0] and WU [p1,q1] in T2, we include WU [r1, s1] and WU [p2,q2] in TU3 .

The segment WU [r0, s0] in TU2 is a curve of class a in Fig. 2.5, which maps forward to a curve of

class c according to Eqs. (2.9). Thus WU [r1, s1] shown in Fig. 2.9 contains no new intersections

in TU3 . Similarly, the segment WU [p1,q1] in TU2 is a curve of class c in Fig. 2.5, which maps
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Figure 2.9. Schematic illustration of the development of the trellis at n = 3.

forward to a curve of class c−1bc according to Eqs. (2.9). Thus, WU [p2,q2] contains the two new

heteroclinic intersections w0 and x0 in TU3 , as shown in Fig. 2.9.

To carry out the HLD technique, we next construct the set X from Eq. (2.12),

X = {pk,qk, rk, sk,wk,xk | ∀k ∈ Z}. (2.18)

As for T2, rk and sk form a pair of pseudoneighbors, but now wk and xk form a new pair of

pseudoneighbors, as can be easily checked with Fig. 2.9. We again punch a hole for each pair

of pseudoneighbors, with a hole (denoted by a circle) in the region bounded by WU [rk, sk] and

WS [rk, sk] as well as a hole (denoted by a square) in the region bounded by WU [wk,xk] and

WS [wk,xk]. As in Fig. 2.8, Fig. 2.9 shows the backward iterates of the holes only until they first

land adjacent to WU [zu,p0]; these holes are numbered 0. Similarly, Fig. 2.9 shows the forward

iterates of these holes only up to the first ones to lie adjacent to TS . Recall, however, that there are

an infinite number of holes adjacent to TS , converging upon z`. These holes create some technical

subtleties in analyzing the bridge dynamics, as discussed in Ref. [53, 54]. For the practical purpose

of determining the active bridge dynamics, however, we may ignore all holes after those that first

lie adjacent to TS , as shown in Fig. 2.9.
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We proceed now to identify all bridge classes in Fig. 2.9. There are three active classes: a, which

encloses circle-hole 2 and square-hole 1 clockwise; b, which encloses circle-hole 1 and square-hole

3 clockwise; and c, which encloses circle-hole 3 and square-hole 2 clockwise. There are two primary

inert classes, u0, encircling circle-hole 2, and v0, encircling square-hole 3. The choice of symbols

a, b, and c is consistent with the labels in Fig. 2.5.

To determine how the active classes map forward, we investigate how a representative bridge in

TU from each class maps forward.

TU [p0,q0] 7→ TU [p1,q1], (2.19a)

TU [p1,q0] 7→ TU [p2, r0] ∪ TU [r0, s0] ∪ TU [s0,q1], (2.19b)

TU [p1,q1] 7→ TU [p2,x0] ∪ TU [x0,w0] ∪ TU [w0,q2]. (2.19c)

Replacing each bridge in the above by its bridge class, we obtain

M(a) = c, (2.20a)

M(b) = bu0b
−1, (2.20b)

M(c) = cv0c
−1. (2.20c)

Note that the class a is not recurrent, i.e. mapping a forward an arbitrary number of times never

produces another copy of a. Thus a is a transient symbol and has no bearing on the topological

entropy of the bridge dynamics. The transition matrix for the remaining two active classes b and c

is then

T =


b c

b 2 0

c 0 2

. (2.21)

T is diagonal because b only produces additional copies of b, and c only produces additional copies

of c. Hence, for T3 there is no mixing between symbols on the left- and right-hand sides of TS . The
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Figure 2.10. Schematic illustration of the development of the trellis at n = 4.

topological entropy of T3 is clearly

h3 = ln 2 = 0.6931, (2.22)

which is the same as h2 for T2.

2.5.4 The development of the trellis at n = 4

To construct T4, we take the union of T3 with the iterate of the inert bridges in T3 ∩U3, namely

TU [r1, s1] and TU [x0,w0], which iterate forward to the segments TU [r2, s2] and TU [x1,w1] in

Fig. 2.10. The segment WU [r1, s1] in TU3 is a curve of class c in Fig. 2.5, which maps forward to a

curve of class c−1bc according to Eqs. (2.9). Thus WU [r2, s2] shown in Fig. 2.10 contains one new

pair of intersections in TU4 , namely (g0, `0). Similarly, the segment WU [x0,w0] in TU3 is a curve

of class b in Fig. 2.5, which maps forward to a curve of class bab−1 according to Eqs. (2.9). Thus,

WU [x1,w1] also contains one new pair of heteroclinic intersections (y0, z0) in TU4 , as shown in

Fig. 2.10.
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To carry out the HLD technique, we again construct the set X from Eq. (2.12),

X = {pk,qk, rk, sk,wk,xk,yk, zk,gk, `k | ∀k ∈ Z}. (2.23)

In Fig. 2.10, y0 and z0 are a pair of pseudoneighbors because none of the intersections in X lie

on WS(y0, z0) or WU (y0, z0). Likewise, g0 and `0 are a pair of pseudoneighbors, and (yk, zk)

and (gk, `k) are the only pairs of pseudoneighbor trajectories for T4. Note that the number of

pseudoneighbor trajectories (and hence holes) does not necessarily increase as more bridges are

added to the trellis. In fact, the number can even decrease, as in the n = 5 case discussed below in

Sect. 2.5.5. Figure 2.10 shows the corresponding holes 0 through 4 (marked as squares and circles).

We ignore all holes numbered 5 and above. There are three families of active bridge classes in T4

(Fig. 2.10): ai, bi, and ci, with i = 1, 2. These three families correspond to the three classes a, b,

and c in Fig. 2.5. The classes a1 and a2 encircle holes clockwise on the upper right of TS ; b1 and b2

encircle holes clockwise on the left of TS ; and c1 and c2 encircle holes clockwise on the lower right

of TS . The subscript on each class denotes the number of holes encircled by the class, not counting

the inert holes, i.e. those adjacent to TS . Finally, Fig. 2.10 shows two primary inert classes u0 and

v0.

To determine how the active classes map forward, we again investigate how a representative

bridge in TU from each class maps forward.

TU [r0, s0] 7→ TU [r1, s1], (2.24a)

TU [p0,q0] 7→ TU [p1,q1], (2.24b)

TU [x0,w0] 7→ TU [x1,y0] ∪ TU [y0, z0] ∪ TU [z0,w1], (2.24c)

TU [p1,q0] 7→ TU [p2, r0] ∪ TU [r0, s0] ∪ TU [s0,q1], (2.24d)

TU [r1, s1] 7→ TU [r2, `0] ∪ TU [`0,g0] ∪ TU [g0, s2], (2.24e)

TU [p1,q1] 7→ TU [p2,x0] ∪ TU [x0,w0] ∪ TU [w0,q2]. (2.24f)
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Replacing each bridge in the above by its bridge class, we obtain

M(a1) = c1, (2.25a)

M(a2) = c2, (2.25b)

M(b1) = b2u0b
−1
2 , (2.25c)

M(b2) = b2a1b
−1
2 , (2.25d)

M(c1) = c−1
2 v0c2, (2.25e)

M(c2) = c−1
2 b1c2, (2.25f)

with transition matrix

T =



a1 a2 b1 b2 c1 c2

a1 0 0 0 1 0 0

a2 0 0 0 0 0 0

b1 0 0 0 0 0 1

b2 0 0 2 2 0 0

c1 1 0 0 0 0 0

c2 0 1 0 0 2 2


. (2.26)

Note, that Eqs. (2.25) mix active symbols between the left- and right-hand sides; the symbolic

dynamics is transitive. The topological entropy of the trellis T4 is then

h4 = lnλ = 0.9181. (2.27)

This is indeed greater than h3 = 0.6931, but less than the topological entropy of the period-three

orbit hpo3 = ln
(
3 +
√

5
)

= 0.9624.

2.5.5 The development of the trellis at n = 5

To construct the trellis T5 (Fig. 2.11), we take the union of T4 (Fig. 2.10) with the forward

iterate of the inert bridges TU [y0, z0] and TU [g0, `0] from T4 ∩ U4. The forward iterate of the

latter produces two new intersections d0 and e0. Furthermore, the trajectories di and ei are the
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only pseudoneighbor pairs in T5, similar to the case seen at n = 2. There is thus a single trajectory

of holes, denoted by circles in Fig. 2.11, where we ignore holes 6 and higher and the holes -1 and

lower.

Following the same naming convention as the n = 4 case, there are four active bridge classes

a1, b1, b2, c1, and one primary inert class u0. Representative curves of the active classes map forward

as follows.

TU [r0, s0] 7→ TU [r1, s1], (2.28a)

TU [`0,g0] 7→ TU [`1,d0] ∪ TU [d0, e0] ∪ TU [e0,g1], (2.28b)

TU [p1,q0] 7→ TU [p2, r0] ∪ TU [r0, s0] ∪ TU [s0,q1], (2.28c)

TU [r1, s1] 7→ TU [r2, `0] ∪ TU [`0,g0] ∪ TU [g0, s2], (2.28d)

which gives the following dynamics for the active bridge classes,

M(a1) = c1, (2.29a)

M(b1) = b2u0b
−1
2 , (2.29b)

M(b2) = b2a1b
−1
2 , (2.29c)

M(c1) = c−1
1 b1c1, (2.29d)

and the transition matrix

T =



a1 b1 b2 c1

a1 0 0 1 0

b1 0 0 0 1

b2 0 2 2 0

c1 1 0 0 2


. (2.30)

with topological entropy

h5 = ln
(√√

2 + 1 + 1
)

= 0.9376. (2.31)
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Figure 2.11. Schematic illustration of the development of the trellis at n = 5.
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2.5.6 The development of the trellis for n = 3k − 1

In Sects. 2.5.6 – 2.5.8, we summarize the results for a general trellis with n ≥ 2. These results

can be proved by induction by iterating the inert classes under the dynamics of Eqs. (2.9).

A schematic of the trellis at n = 3k − 1, k = 1, 2, ..., is shown in Fig. 2.12a. There is a

single trajectory of holes. Of these, only the first hole to lie adjacent to TS is shown. This hole is

surrounded by an inert bridge of class u0. There are m = k bridges of type bi, nested within one

another, and similarly m− 1 bridges of type ai and ci

a1, ..., am−1 b1, ..., bm c1, ..., cm−1 m = k (2.32)

Only one representative of each class is shown in the figure. These classes map forward according

to

M(ai) = ci, i = 1, ...,m− 1, (2.33a)

M(b1) = bmu0b
−1
m , (2.33b)

M(bi) = bmai−1b
−1
m , i = 2, ...,m, (2.33c)

M(ci) = c−1
m−1bicm−1, i = 1, ...,m− 1. (2.33d)
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These equations reduce to Eqs. (2.14) and (2.29), for n = 2 and n = 5, respectively. Eqs. (2.33)

yield the transition matrix

T =

0 1 0 0

0
0 0 1
0 0 1 0 0

0
0

0 0 1
2 2 0 0

0 0

0 0
2 2





0 0

0

I 0

a1

am−1

b1

bm
c1

cm−1

a1 am−1b1 bm c1 cm−1

. (2.34)

2.5.7 The development of the trellis for n = 3k

A schematic of the trellis at n = 3k, k = 1, 2, ..., is shown in Fig. 2.12b. There are now two

trajectories of holes. Again only the first holes to lie adjacent to TS are shown. These holes are

surrounded by the inert classes u0 and v0. There are now m = 2k − 1 bridge classes of each type

a1, ..., am b1, ..., bm c1, ..., cm m = 2k − 1. (2.35)

These classes map forward according to

M(ai) = ci, i = 1, ...,m, (2.36a)

M(b1) = bmu0b
−1
m , (2.36b)

M(bi) = bmai−1b
−1
m , i = 2, ...,m, (2.36c)

M(c1) = c−1
m v0cm, (2.36d)

M(ci) = c−1
m bi−1cm, i = 2, ...,m. (2.36e)
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These equations reduce to Eqs. (2.20) for n = 3. Eqs. (2.36) yield the transition matrix

T =

0 1 0 0

0
1

0 0
0 0 0 1 0 0

0
0 0 1
2 2 0 0

0 0

0 0
2 2





0 0

0

I 0

a1

am

b1

bm

c1

cm

a1 am b1 bm c1 cm

. (2.37)

2.5.8 The development of the trellis for n = 3k + 1

A schematic of the trellis at n = 3k + 1, k = 1, 2, ..., is shown in Fig. 2.12c. There are again

two trajectories of holes, but there are now m = 2k bridge classes of each type

a1, ..., am b1, ..., bm c1, ..., cm m = 2k. (2.38)

These classes map forward according to the same Eqs. (2.36) with the same transition matrix

Eq. (2.37) as above. These equations reduce to Eqs. (2.25) for n = 4.

2.6 For τ̄f < 1, Tn yields a lower bound on the topological entropy

of the fluid flow

Though the trellis Tn was extracted as a finite length approximation to the tangle forced by the

braiding of the period-three orbit ρi, any tangle that has Tn as a subtrellis must have a topological

entropy at least equal to the topological entropy of Tn itself. Furthermore, though the period-three

orbit vanishes below τ̄f = 1, the trellises Tn persist to lower τ̄f values. Thus, these trellises provide

a rigorous method by which we may bound the topological entropy below τ̄f = 1, without relying
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Figure 2.13. Transition of the trellis from n = 5 to n = 4 as τ̄f is lowered. The pseudoneighbors d0 and e0
from Fig. 2.11 at τ̄f = 0.932 (dots in panel a) merge together at a heteroclinic tangency at τ̄f = 0.921 (panel
b) and disappear at τ̄f = 0.911 (panel c).

Figure 2.14. Topological entropy results. a) Comparison of the direct computation of topological entropy
(red), refined HLD (magenta), simple heteroclinic orbit bound (blue), and period-three braiding bound
(black) over the full τ̄f interval studied. Error bounds (red) are 95% confidence intervals computed from
the exponential fit. b) Comparison of the results in (a) to the value using almost-cyclic sets (green) in Grover
et al., Chaos, Vol. 22, Pg. 12 (2012) AIP [33].
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on the period-three orbit, which does not exist, or indeed any other periodic orbit, with the exception

of the two fixed points zu and z`, which persist to τ̄f = 0.

As τ̄f is lowered for a given trellis Tn, the first heteroclinic intersections of Tn to vanish in a

bifurcation must be a pair of pseudoneighbors. That is, the pseudoneighbors of Tn force all the other

heteroclinic intersections of Tn to exist. Thus, to determine the lowest τ̄f value at which Tn forms

a subtrellis of the full tangle, we need only track the pseudoneighbors and determine when they

collide in a tangency between the stable and unstable manifolds. An example is shown for T5 in

Fig. 2.13, where we see that T5 persists down to τ̄f = 0.923. In a similar manner, we determine the

lowest value of τ̄f for which Tn exists for all n = 4, 5, 6, 7. These τ̄f -values form the left endpoints

of the horizontal segments in Fig. 2.14. The vertical positions of the segments are the topological

entropies hn of Tn, as computed in Sect. 2.5. As expected, hn falls below the direct topological

entropy computation of the fluid, and even provides a fairly accurate estimate of the fluid entropy

down to n = 6. At n = 5 and lower, however, a noticeable gap develops between the fluid entropy

and the hn bound. This difference is due to the finite length of Tn, and in particular the failure of

Tn to account for the future behavior of its inert bridge classes. For example, in Fig. 2.11, the trellis

T5 contains the inert bridge TU [y1, z1], but contains no information about when its forward iterate

develops new intersections. At some future iterate TU [y1, z1] must produce more intersections

with TS , and must hence generate more topological entropy, but T5 contains no information about

when this will happen or how many new intersections will be produced when it does happen. This

problem can be addressed by using a longer and more detailed trellis to approximate the dynamics;

this is studied in Sect. 2.7.

The topological entropy hn of the trellis Tn can be interpreted as resulting from the braiding of

the pseudoneighbor orbits; this is analogous to the topological entropy generated by the braiding

of periodic orbits (Sect. 2.5) except that the pseudoneighbors are heteroclinic and do not close on

themselves. Only one orbit from each pseudoneighbor pair is needed, which can be taken to be the

orbit next to which the hole is punched. For T5, there is a single pair of pseudoneighbor orbits di

and ei (Fig. 2.11). Fig. 2.15a shows points from the orbit di evolved forward in time. The dots show

the heteroclinic intersections di at t = 0, while the curves show the evolution of each intersection

from t = 0 to t = τ̄f . In that time, di evolves forward to di+1. Some of these forward evolution
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Figure 2.15. Visual representation of the heteroclinic orbit braid (colored curves) for n=4 shown in a) the
xy space viewed from above the xy plane and b) the xyt space. The two black curves are the two periodic
orbits at the top and bottom boundary of the cavity.

curves intersect. The trajectory that arrives first is shown above the trajectory that arrives later. A

more three-dimensional view is shown in Fig. 2.15b, plotted in xyt-space, where time t progresses

downward. In this way, we have a visual representation of the braid formed by the heteroclinic

trajectory di. Note that this braid has an infinite number of strands, one strand for each value of

i, and that none of the strands themselves are periodic. However, an infinity of strands converge

upon the top boundary of the cavity (going backward in time), ultimately following the periodic

orbit swept out by the fixed point zu of M . A similar infinity of strands converge upon the periodic

orbit swept out by the fixed point z` at the bottom of the cavity. Only a finite number of strands are

responsible for truly stirring the interior of the fluid domain.
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2.7 Automated HLD analysis yields a tight lower bound on

topological entropy

As noted above, the lower bound given by hn to the topological entropy h of the fluid flow is

not tight for all τ̄f values because the bridges included in Tn can fail to capture a significant portion

of the topological structure. We can thus address this deficiency by using a trellis with more bridges

covering a larger fraction of the phase space. In practice, we construct such a trellis by setting an

area-criterion for iterating a given bridge forward. Specifically, to determine whether a bridge is

iterated forward, we compute the areas of the trellis domains on both sides of a bridge; here, trellis

domains refer to those connected regions of phase space obtained by cutting phase space along the

stable and unstable segments of TS and TU . If both areas are greater than some specified area

tolerance, the given bridge is mapped forward to a new set of bridges, which are then added to the

trellis. By using a sufficiently small area tolerance, we can refine the trellis to a high degree. In this

study, the area tolerance used is 0.005 for values of τ̄f less than 0.932 and 0.001 for values of τ̄f

greater than 0.932. A smaller tolerance is used when more bridges are created, i.e. when there is

more topological entropy.

The HLD algorithm in Refs. [53, 54] for computing symbolic dynamics has been automated

in MATLAB. It can handle a trellis of arbitrary complexity. Thus, once a refined trellis has been

computed, the HLD technique can be applied to it automatically, yielding symbolic dynamics and

the topological entropy of the trellis.

We summarize our automated approach for computing topological entropy. For a fixed area

tolerance, we compute the trellis by iterating bridges forward n times, using the area criterion

mentioned above to determine whether a bridge should or should not be iterated at each step.

The first iterate n = 1 is the iterate of the initial unstable segment from the fixed point zu to

the pip p0. At each value of n we compute the topological entropy h from the trellis using the

automated MATLAB code. Figure 2.16a shows h versus iterate n for different values of the area

tolerance at τ̄f = 0.9. For each area tolerance, the topological entropy appears to have converged

by n = 13. Figure 2.16b shows h versus the area tolerance at the fixed value of n = 14. h increases

monotonically as the area tolerance decreases. The value of h for the smallest area tolerance of
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0.001 appears within the error bars for the direct computation of topological entropy (red horizontal

lines.)

We repeat the above procedure for a range of τ̄f values. Figure 2.14 records the topological

entropy (magenta) computed from the trellis with the smallest area tolerance (either 0.001 or 0.005)

and the most iterates (n = 14 for all but the largest value τ̄f = 1.099). This curve is a lower bound

on the true topological entropy of the fluid flow. For τ̄f < 1 the lower bounds are quite good, with

only a small gap less than about 0.004 between the direct topological entropy computation and the

refined HLD computation. For τ̄f & 1.05, the direct computation of topological entropy increases

significantly away from hpo3.

The refined HLD computation does indeed give a lower bound above hpo3, but it is not nearly

as tight as at lower values of τ̄f . This is due to numerical issues that make it harder to compute

a sufficient number of bridges in the trellis within a reasonable amount of time. To show this

computation in more detail, Fig. 2.17 repeats the analysis of Fig. 2.16 for τ̄f = 1.099. As Fig. 2.17b

makes clear, we would need to use a stricter area tolerance in order to resolve more of the topological

entropy of the flow. However, this is computationally intensive. Figure 2.18a shows the trellis

used at τ̄f = 1.099 for the smallest area tolerance. It fills in most of the fluid, except for three

regions around the period-three orbit. The topological entropy is not as well measured in these

three regions, which we believe is the main reason for the large gap between the direct topological

entropy computation and the refined HLD topological entropy computation shown on the far right

of Fig. 2.14a or in Fig. 2.17b. We believe a more efficient approach to sampling phase space would

be to directly target the three undersampled regions by using the tangle attached to hyperbolic

period-three orbits within these regions. Such nested tangles approaches have proved useful in prior

work [53, 54]. Finally, Figs. 2.18b shows the braiding of pseudoneighbor orbits responsible for

“stirring” the fluid at τ̄f = 1.099. Though the detailed braiding structure can obviously not be

discerned in these figures, they give a sense of the complexity involved for more complicated flows.
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Figure 2.16. Calculation of the HLD topological entropy bound using different values of area cutoff for
τ̄f = 0.9. a) Topological entropy as a function of iterate n for different values of area cutoff. b) Topological
entropy as a function of area cutoff for n = 14. In both plots the horizontal red lines denote the error bounds
on the direct computation of topological entropy.
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Figure 2.17. Calculation of the HLD topological entropy bound using different values of area cutoff for
τ̄f = 1.099. a) Topological entropy as a function of iterate n for different values of area cutoff. b) Topological
entropy as a function of area cutoff for n = 12. In both plots the horizontal red lines denote the error bounds
on the direct computation of topological entropy.
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Figure 2.18. a) The refined tangle for τ̄f = 1.099 computed up to iterate n = 12. b) Trajectories of the
pseudoneighbors of the refined tangle in the xyt space.

2.8 Comparison to braiding by almost-cyclic sets

Grover et. al [33, 69] explained topological entropy in the absence of the period-three orbit

(τ̄f < 1) by first identifying nearly coherent regions of the fluid that braid around one another in a

periodic fashion. These nearly coherent regions are called almost-cyclic sets, and they are identified

and computed from an eigenfunction analysis of a set-based approximation to the Frobinous-Perron

operator [1, 26, 28, 29]. Since the almost-cyclic sets have a high degree of coherence, they can be

viewed as stirring the fluid like true periodic orbits. It is then natural to associate a braid to their

motion, even though no periodic orbit within the almost-cyclic sets is shown to exist. Under this

approximation, the topological entropy of the braid associated with the almost-cyclic set provides a

lower bound to the topological entropy of the fluid motion.

As τ̄f is decreased below 1, the period-three orbit disappears, but a period-three almost-cyclic

set with the same braid type remains, extending the lower bound hpo3 below τ̄f = 1. At about

τ̄f = 0.96 this almost-cyclic set disappears and an almost-cyclic set of period 16, with smaller

topological entropy, is formed. In this manner, Grover et al. witness a series of bifurcations of
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the almost-cyclic sets with periods p = 3, 16, 13, 10, 8, providing a monotonically decreasing set

of bounds on the topological entropy as τ̄f is lowered. See Fig. 2.14b. This method produces

steps in topological entropy, just as our simple heteroclinic orbit bound from Sect. 2.5, though

there is no direct relationship between the steps in these two approaches. The two approaches do

approximately agree for the almost-cyclic set with p = 16 and the simple heteroclinic analysis

for n = 6. However, the p = 13 and p = 10 bounds are clearly tighter than the n = 5 and

n = 4 bounds. Furthermore, the left endpoints of the p = 13 and p = 10 intervals almost

exactly agree with our direct computation of the topological entropy. However, the right endpoints

of these intervals clearly drops below the direct topological entropy computation, i.e. there is excess

topological entropy at the right endpoints that is unexplained by the almost-cyclic sets.

As noted in Sect. 2.7, the refined HLD analysis, which goes beyond that of Sect. 2.5, produces

a topological entropy bound that closely follows the direct topological entropy computation. It

produces a bound that is comparable to the cyclic-set bound of the left endpoints at p = 13 and

p = 10, but it also produces good bounds at the right endpoints of these intervals. We can thus

interpret the heteroclinic orbits at these endpoints as creating the excess topological entropy.

It would be interesting to more directly relate the almost-cyclic-set approach to the heteroclinic

orbit approach. For example, it might be that there exist heteroclinic orbits that nearly follow the

braiding pattern of the almost cyclic sets.

2.9 Concluding remarks

We have learned from this study that topological entropy can be reliably computed for a realistic

fluid model based on the “stirring” of the fluid by heteroclinic orbits. Ultimately, this computation

is possible through the use of symbolic dynamics (HLD) derived from finite-length pieces of stable

and unstable manifolds. An advantage of this technique is that it only relies on the existence of the

periodic orbits to which the stable and unstable manifolds are attached, in this case the period-one

orbits on the cavity boundary. These orbits persist for all values of the driving period τf , whereas

other periodic orbits in the interior of the fluid cavity come or go with changing τf values.
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The limiting factor in computing topological entropy with HLD is the computation of

sufficiently many segments of the unstable manifold, in order to compute sufficiently many

heteroclinic intersections contributing to the entropy. This computation of stable and unstable

segments can be achieved in various ways, but there are two basic approaches. The first is to simply

include in the trellis more and more segments of the manifolds connected to the original fixed points

that define the tangle; this is the approach taken in this study. The second is to include in the trellis

more periodic orbits (not necessarily fixed points) along with segments of their invariant manifolds.

This latter technique allows one to target regions of phase space more precisely, for example, by

including new tangles surrounding stable islands. Ultimately, we believe this latter approach will

provide a more efficient means of targeting phase space and lead to faster computations of the

topological entropy from symbolic dynamics. For example, we could use this approach to refine the

topological information surrounding the stable period-three islands that exist for τ̄f > 1. We plan

to explore this issue in future work.



Chapter 3

Computing multiexponential decay

rates for the Hénon map

Transport properties of chaotic systems are computable from data extracted from periodic orbits.

Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral

determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape

rate computed from periodic orbits converges to the true value as more and more periodic orbits are

included. Escape from a given region of phase space can be computed by considering only periodic

orbits that lie within the region. An accurate symbolic dynamics along with a corresponding

partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given

period, to ensure that no important periodic orbits are missing in the computation. Homotopic

lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic

dynamics for maps using the topological forcing of intersections of stable and unstable manifolds

of a few anchor periodic orbits. In this study, we apply the HLD technique to compute symbolic

dynamics and periodic orbits to compute distinct escape rates from different regions of phase space

for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic

plateaus, which are intervals of parameter where the dynamics is hyperbolic and the symbolic

dynamics does not change. After the periodic orbits are computed for a single parameter value

within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an

interval that spans the hyperbolic plateau. From the periodic orbits, the escape rate is accurately

58
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computed over the hyperbolic plateau using the spectral determinant, and escape from individual

regions of phase space is computed by considering only periodic orbits that lie in those regions. The

escape rates computed from a few thousand periodic orbits agree with escape rates computed from

Monte Carlo simulations requiring hundreds of billions of orbits.

The escape rate of asteroids, chemical reaction rates, and fluid mixing rates are all examples

of chaotic transport rates. One can compute transport rates by launching a Monte Carlo simulation

over millions of trajectories. However, it is possible extract this information from a much smaller

number of trajectories. One method of doing so is by focusing on unstable periodic orbits, which

form the skeleton for the long-time behavior of chaotic dynamical systems. The local stretching

near periodic orbits contributes to the overall escape rate which can be computed from the spectral

determinant, a function which incorporates the eigenvalues of the periodic orbits. We classify and

find periodic orbits using finite-length segments of a heteroclinic tangle, which is a collection of

invariant manifolds and their intersections. The heteroclinic tangle encodes the topology of phase

space and can be used to compute the system’s symbolic dynamics, giving additional insight on

how material is transported in phase space, and allowing for characterizing and computing periodic

orbits. The use of heteroclinic tangles to compute symbolic dynamics can improve estimates of

chaotic transport rates in a broad range of deterministic chaotic dynamical systems.

3.1 Introduction

We study asymptotic transport rates in chaotic systems, namely the escape rates of trajectories

from one region of phase space to another. The calculation of escape rates has direct physical

applications such as computing atomic ionization rates, chemical reaction rates, and the escape

rates of asteroids. Given physically relevant criteria for survival and escape, a chaotic system can

exhibit an exponential decay given by

N(t) = N0e
−γt, (3.1)

where N(t) is the number of surviving trajectories as a function of time, N0 is a constant, and

γ is the asymptotic escape rate. The escape rate γ can be computed via Monte Carlo simulation



60

by iterating an initial ensemble of points forward in time and counting the number of surviving

trajectories as a function of time. Unfortunately a large number of initial points, often exceeding

the millions or billions, can be necessary to accurately resolve the asymptotic escape rate.

Our aim is to compute γ using fewer orbits, namely unstable periodic orbits. Gutzwiller [34,

35] made early insights in methods using periodic orbits when he developed the Gutzwiller trace

formula, which he used to compute quantum eigenvalues in the anisotropic Kepler problem (the

computation of classical escape rates follows directly from Gutzwiller’s semiclassical formulation.)

Although Gutzwiller’s original trace formula method did not permit the convergent computation of

individual quantum eigenvalues, subsequent reformulations in terms of cycle expansions of spectral

determinants, or “zeta functions,” provided better convergence properties. For example, Cvitanovic

and Eckhardt [17] successfully computed individual complex resonances of the three-disk scattering

problem based on cycle expansions. An in-depth explanation of spectral determinants along with

examples of escape rate computations can be found in The Chaos Book [16]. Our work is also

motivated by prior theoretical and experimental work demonstrating the role of periodic orbits in

quantum chaos [20, 21, 39, 40, 44, 49, 50].

For a system such as the three-disk scattering problem, the periodic orbits can be labeled by a

simple symbolic labeling based on the sequence of disks that are visited. Given a set of allowed

symbol sequences, known as the system’s symbolic dynamics, one can write down the symbolic

itinerary for any periodic orbit. This ability allows for accurately characterizing and computing

all periodic orbits up to a chosen period, which is necessary to apply the spectral determinant

and compute escape rates. In many realistic physical systems, however, the construction of

symbolic dynamics is not obvious, making the periodic orbits difficult to characterize and compute.

We wish to compute escape rates in realistic physical systems from the spectral determinant by

computing periodic orbits using improved methods of computing symbolic dynamics. The ability

to systematically compute symbolic dynamics, partitions, and periodic orbits allows for applying

periodic orbit theory to a broad range of physical applications, including studying the role of

periodic orbits in quantum chaos in a real physical system, which is a future goal of this work.

One challenge we wish to address is computing escape rates in a mixed Hamiltonian phase

space, where stable islands are embedded in a chaotic sea. The rich fractal structure of escape
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dynamics near the stable islands leads to two complications in computing the spectral determinant.

The first complication is that the symbolic dynamics becomes very complex, requiring hundreds of

symbols, and more complicated periodic orbits are necessary to converge to the true escape rate.

The second complication is that the system no longer exhibits a single exponential escape rate as in

Eq. (4.1), but rather a multiexponential escape rate given by

N(t) = N0e
−γ0t +N1e

−γ1t +N2e
−γ2t + ..., (3.2)

where N0, N1, N2 are constants and γ0, γ1, γ2 are different escape rates representing different

regions of phase space. An example of a bi-exponential escape rate is shown in Fig. 3.3. When

the number of terms in Eq. (4.2) is infinite, the resulting curve is an algebraic escape rate.

We address these two complications by using a technique called homotopic lobe dynamics [53,

54] (HLD), which uses the topological forcing by intersections of stable and unstable manifolds of

a few anchor orbits to compute symbolic dynamics and partition the phase space. Using HLD, an

arbitrarily accurate partition of phase space can be computed by incorporating longer and longer

segments of the stable and unstable manifolds of anchor orbits. Moreover, the periodic orbits are

identified by which region of phase space they occur in, and the distinct escape rates γi in Eq. (4.2)

can be computed by computing the spectral determinant using only periodic orbits that lie in the

region from which escape is being computed from (see Sect. 3.7). The HLD technique can be used

to specifically target the symbolic dynamics of a given region to search for periodic orbits in that

region. Once the periodic orbits and their eigenvalues are computed, the spectral determinant is used

to compute the escape rate. The escape rate computed from the spectral determinant is compared to

Monte Carlo computations. This work augments previous studies on heteroclinic tangles by using

the symbolic dynamics computed from HLD to compute periodic orbits and transport rates. For

other approaches to symbolic dynamics of tangles, see Refs. [12–15, 22, 23, 64, 65].

Although we provide the machinery for computing the spectral determinant in a mixed phase

space, we focus this study on a system where the accuracy of the symbolic dynamics can be verified.

One way to verify the accuracy of symbolic dynamics is by computing the topological entropy,

a measure of complexity and mixing in phase space. Once the symbolic dynamics is computed
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from HLD, the topological entropy computed by taking the natural log of the largest eigenvalue

of the transition matrix. Over the intervals of Hénon map studied in Sect. 3.6, for example, the

topological entropy computed from HLD matches the values computed using a method based on

computational Conley index theory by Frongillo et. al [19, 25], and also matches the topological

entropy values computed using pruning of symbolic dynamics by Hagiwara and Shudo [36].

Agreement in topological entropy indicates that our symbolic dynamics accounts for all periodic

orbits. Therefore, by computing periodic orbits over the ranges of hyperbolic plateaus, which are

intervals of parameter where the symbolic dynamics does not change, we can accurately compute

the escape rate using the spectral determinant. We also study what happens to the convergence of

the escape rate as the parameter is varied within and away from the hyperbolic plateau. To compute

multiexponential escape rates, we focus on a parameter range where a subregion of phase space is

within a hyperbolic plateau, while the full phase space has a higher topological entropy and may or

may not be hyperbolic.

This paper is organized as follows. Section 3.2 summarizes the method for computing the escape

rate from periodic orbits using the spectral determinant. Section 3.3 introduces the map used in our

study, the area-preserving Hénon map. Section 3.4 details the numerical technique for computing

the escape rate directly from a Monte Carlo simulation. Section 3.5 describes the two-symbol

symbolic dynamics for an interval of parameter of the Hénon map, and presents the escape rate

data computed from periodic orbits over this parameter range. Section 3.6 presents the symbolic

dynamics and partitions for two hyperbolic plateaus of the Hénon map, along with periodic orbits

and the escape rates computed from periodic orbits. Section 3.7 presents the symbolic dynamics

and escape rates for a parameter range where the Hénon map exhibits multiexponential escape rates,

namely a faster short-time escape rate and a slower, long term escape rate. Section 3.8 compares the

results computed from HLD with those computed from continuing orbits downward from the full

shift on two symbols.



63

3.2 Computing Escape Rates from Periodic Orbits Using the

Spectral Determinant

We present the derivation of the spectral determinant for computing the escape rate γ in Eq. (4.1)

following the discussion in Chaos Book [16]. The following derivation applies for area-preserving

maps on a 2D plane, but a similar function applies for continuous-time maps and in higher

dimensions [16]. For a mapping f(x), the Perron-Frobinous operator given by

L(y, x) = δ(y − f(x)) (3.3)

is used to compute the escape rate. The Perron-Frobinious operator is used to map forward densities

using the formula

ρ′(y) =
∫
dxL(y, x)ρ(x) (3.4)

where ρ is an initial distribution of densities in phase space and ρ′ is the mapped distribution of

densities. The escape rate γ is equal to the natural log of the largest eigenvalue λ of L. One way

to compute the leading eigenvalue of L is to find the zeros of the determinant det(1− zL), known

as the spectral determinant. The smallest real root of the spectral determinant greater than 1 yields

λ in the form z = 1/λ, where λ = eγ . The spectral determinant can be written as a power series

given by

det(1− zL) = 1−
∞∑
n=1

Qnz
n, (3.5)

where Qn are coefficients to be determined. The computation of γ then lies in computing the

coefficients Qn and finding the zeros of Eq. (3.5). To compute the coefficients Qn, it helps to take

the logarithmic derivative of the spectral determinant. The logarithmic derivative of the spectral

determinant be written in terms of the trace using the identity

tr
(

zL
1− zL

)
= −z d

dz
ln det(1− zL)

= −
z d
dz det(1− zL)
det(1− zL) .

(3.6)
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The left hand side of Eq. (3.6) can be expanded in a Taylor series in z as

tr
(

zL
1− zL

)
=
∞∑
n=1

Cnz
n, (3.7)

where

Cn = tr(Ln) (3.8)

are known as the trace coefficients. Taking the derivative in Eq. (3.6) and substituting Eqs. (3.5)

and (3.7) into Eq. (3.6) yields the equation

(1−
∞∑
n=1

Qnz
n)
∞∑
n=1

Cnz
n =

∞∑
n=1

nQnz
n. (3.9)

Equation (3.9) provides a convenient way to compute the coefficientsQn in terms of the coefficients

Cn. Plugging in n = 1 shows that Q1 = C1, and it is easy to prove by induction that

Qn = 1
n

[Cn −
n−1∑
i=1

QiCn−i]. (3.10)

The coefficients Cn are defined in Eq. (3.8) and can be written as

Cn =
∫
dxLn(x, x) =

∫
dxδ(x− fn(x). (3.11)

The delta function in Eq. (3.11) picks up a contribution whenever x is a fixed point of fn(x), and

so

Cn =
∑
x∗

1
|det(1− ∂f

∂x

n|x∗)|
, (3.12)

where the sum is taken over all fixed points x∗ of fn. A prime periodic orbit is one that is not a

copy (or several copies) of a lower-period orbit retracing itself. Equation (3.12) can be re-written in

terms of prime orbits as

Cn =
∑
p

np

∞∑
r=1

1
|det(1−M r

p )|δrnpn,

| det(1−M r
p )| = |(1− λrp)

(
1− λ−rp

)
|,

(3.13)
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Figure 3.1. The topological entropy lower bound computed from HLD as a function of k for the
area-preserving Hénon map. The vertical bands indicate the parameter ranges whose periodic orbits
are computed in Sects. 3.5-3.7. The right-most band (red) marks the k interval [5.699,∞) where the
topological entropy is ln(2). The black and magenta regions denote the k intervals [5.194, 5.5366] and
[4.5624, 4.5931] respectively, which are both hyperbolic plateaus with topological entropy ln(1.969) and
ln(1.895) respectively. The green region denotes the interval [4.1930, 4.201] found using HLD has and is an
estimate for the interval where the inner region is fully hyperbolic. The topological entropy for this k interval
is exactly half the entropy as the k interval [4.5624, 4.5931], ln(1.895)/2. See Sect. 3.7 for more discussion
on this interval.

where

Mp = ∂f

∂x

np
∣∣∣∣
x∗

, (3.14)

np is the period of x∗, and λp is the greater eigenvalue of Mp. The escape rate γ is computed by

first computing all periodic orbits up to period n and computing the trace coefficients Cn using

Eq. (4.15). Then the coefficients Qn are computed using Eq. (3.10). The escape rate γ is then

computed by finding the roots of the polynomial in Eq. (3.5).

One consequence of the spectral determinant for computing γ is that escape from a given region

only depends on the periodic orbits in that region, and adding or subtracting regions that have no

periodic orbits in them does not change the escape rate.
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Figure 3.2. The resonance zone (yellow) for k = 10. The asterix marks the location of the fixed point whose
stable (red) and unstable (blue) manifolds bound the resonance zone. The detection line used to define escape
for Monte Carlo is shown in black. The initial ensemble of points for Monte Carlo is shown in green.

3.3 The area-preserving Hénon map

Our model of choice for computing escape rates is the Hénon map [38], given by

xt+1 =yt − k + x2
t ,

yt+1 =− bxt.
(3.15)

where k and b are parameters of the map. In the figures, we rotate the coordinates (x, y) by

45 degrees in the counter-clockwise direction so that the symmetry axis is the horizontal axis.

We define M(xt, yt) as the map which evolves a point xt = (xt, yt) forward to the point

xt+1 = (xt+1, yt+1). Although the techniques discussed throughout this paper are valid for maps

that are not area-preserving, we set b = 1 to connect with Hamiltonian dynamical systems where

area is preserved in phase space. Given b = 1, the map defined by Eq. (3.15) can exhibit a variety

of chaotic phase spaces ranging from a full binary horseshoe at k > 5.699 to having a mixed phase

space with stable islands embedded in a chaotic sea at lower k values.

Figure 3.1 shows the topological entropy of the Hénon map computed over a wide range

of parameter value using symbolic dynamics computed from HLD. The rightmost shaded region

denotes the interval k ∈ [5.699,∞) where the dynamics exhibits a full horseshoe with topological

entropy of ln(2). Escape rates for k ∈ [5.699,∞) are computed using periodic orbits in Sect. 3.5.

As k is lowered, the topological entropy decreases monotonically. This decrease is not strictly
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monotonic because of the existence of hyperbolic plateaus, which are intervals of k where the

dynamics is hyperbolic and the topological entropy does not change. The black and magenta

shaded regions denote the intervals of k which Arai identified to be hyperbolic plateaus [3], namely

k ∈ [5.194, 5.5366] and k ∈ [4.5624, 4.5931] for which we compute escape rates in Sect. 3.6.

The green shaded band denotes an interval of k where a subregion of phase space exhibits exactly

half the entropy as the plateau shown in magenta, and escape rates are computed in this interval in

Sect. 3.7. In this case, the subregion exhibits a hyperbolic plateau when treated as its own dynamical

system. See Sect. 3.7 for more discussion on this interval.

3.4 Monte Carlo Computation of Escape Rate γ

Throughout this study, we compute the escape rate γ using a Monte Carlo method to compare

with the value obtained from periodic orbits. The phase portrait for k = 10 is shown in Fig. 3.2. The

resonance zone (yellow) is bounded by the stable and unstable manifolds of a hyperbolic fixed point,

and contains all of the periodic orbits in the system. Escape from the resonance zone is defined by

leaving the zone and entering the unbounded white region. Equivalently, escape can be defined as

passing to the right of the detection line shown in Fig. 3.2. Since the escape rate does not depend on

the initial conditions within the resonance zone, the initial points are chosen within the resonance

zone near the fixed point, shown in green in Fig. 3.2.

Figure 3.4 shows the number of surviving trajectories along with the fit line whose slope gives

the approximation to the escape rate. Depending on available computational resources at the

time of study, the Monte Carlo simulations were computed in parallel using the Message Passing

Interface (MPI) [62] on the Multi-Environment Research Computer for Exploration and Discovery

(MERCED), or on an NVIDIA GTX 970 graphics processing unit using the Compute Unified

Device Architecture (CUDA) [61]. Sect. 3.4.1 describes the fitting method used and the choice

of error bounds based on the goodness of fit.

In the case of a multiexponential escape rate as in Eq. 4.2, choosing an initial ensemble just

outside the resonance zone is more suitable for detecting multiple exponential escape rates. After

iterating the initial points forward they enter the resonance zone before escaping past the detection
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Figure 3.3. The number of surviving trajectories as a function of iterate for k = 4.1933, using initial points
outside the resonance zone. The fit interval is computed by taking a log of the data and first fitting to the
interval starting at iterate 52 and ending at iterate 80 to compute the asymptotic escape rate, then subtracting
the resulting fitting function from the data and fitting to the interval starting at iterate 13 and ending at iterate
24 to compute the short-time escape rate. Inset: The phase portrait near the fixed point for k = 4.1933.
The asterix marks the location of the fixed point whose stable (red) and unstable (blue) manifolds bound the
resonance zone. The initial ensemble of points for Monte Carlo is shown in green. The method of computing
the fitting function is described in Appendix A.

line. For k = 4.1933, the escape curve is biexponential as in Fig 3.3, exhibiting a fast, initial escape

rate and then a slow, asymptotic escape rate. Starting the initial points outside the resonance zone

gives more time for transients to expire before the points begin to escape, allowing for more accurate

observation of the fast, initial escape rate. Such a computation of escape mimics the scattering of

electrons from nuclei in chaotic atomic systems, as studied in Refs. [56, 75]. We compute the two

escape rates for k = 4.1933 using periodic orbits and using a more accurate Monte Carlo method

that targets individual resonance zones in Sect. 3.7.

3.4.1 Choosing appropriate fit intervals and error bounds for Monte Carlo

escape rates

Once the Monte Carlo data shown in Fig. 3.4 (blue) is computed by counting the number of

surviving trajectories as a function of time, the escape rate is computed by fitting a line to the log of

this data. The error bars used in the figures are the 95% confidence intervals computed from the fit.
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Figure 3.4. The number of surviving trajectories as a function of iterate (blue) for k = 10. The fitting
function (red) is fit to the iterate interval [11, 20]. The escape rate computed from this fit is 1.02814 ±
0.00071. Inset: The escape rate upper (red) and lower (blue) bounds as a function of fit interval. The end
point of the fit interval is 20 iterates. The error bounds chosen for comparison with periodic orbits are shown
in black.

The starting and ending iterates for the fit interval must however be carefully chosen to obtain an

accurate bound on the escape rate. If the starting iterate of the fit interval is too low, the transients

will not have expired, and correlated trajectories that escape in the first several iterates will provide

an inaccurate result for the escape rate. If the starting iterate of the fit interval is too high, there

will be too few points remaining in the simulation to properly sample the phase space and resolve

the true asymptotic escape rate of the system. The fit is computed over every possible starting and

ending point value, and the starting and ending point with the tightest confidence interval is chosen.

The inset of Fig. 3.4 shows the escape rate upper and lower bounds computed as a function of the

starting point of the fit interval by fixing the ending point of the fit interval at 25. The escape rate

estimates are wider first few iterates, then they level off and remain flat, but at even later iterates the

error bars eventually grow large when the remaining number of surviving trajectories is low. The

smallest error bounds shown in black are chosen. This technique is used for computing all Monte

Carlo escape rates in Sects. 3.5-3.7.
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Figure 3.5. k=10 partitions. The periodic orbits up to period 13 are plotted in black. The symbolic dynamics
(inset) is a full shift on two symbols.

In the case of the scattering problem studied in Fig. 3.3, the bi-exponential escape rate is

computed by first fitting an exponential to the later iterates to extract the asymptotic decay, then

subtracting that fit function from the data, and finally fitting to the earlier iterates of the data to

compute the initial decay.

3.5 Hénon Escape For Full a Shift on Two Symbols

We first demonstrate the spectral determinant technique for the k range where the dynamics is

a full binary horseshoe, k > 5.699. The dynamics can be encoded using two symbols denoted 0

and 1, whose corresponding partition elements are shown for k = 10 in Fig. 3.5. The symbolic

dynamics transition graph is shown in the inset of Fig. 3.5. All periodic orbits in the system consist

of points lying in region 0 and region 1, and the symbolic itinerary of any period-N orbit is a binary

string of length N .

3.5.1 Periodic orbit computation of γ

An accurate partitioning of the phase space and corresponding symbolic dynamics allows for

characterizing and computing periodic orbits in order to compute γ from the spectral determinant.

The symbolic dynamics is used to compute a symbolic itinerary for a given periodic orbit. The

symbolic itinerary along with the corresponding partitions are used to construct a seed. The seed is
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Period Cumulative number of orbits γ

1 2 1.1989476364

2 3 0.99036961

3 5 1.0371111058

4 8 1.0274997079

5 14 1.0278413650

6 23 1.0279897430

7 41 1.0280053653

8 71 1.0280053619

9 127 1.0280053745

10 226 1.0280053736

11 412 1.0280053736

12 747 1.0280053734

13 1337 1.0280053742

Monte Carlo 1.02814 ± 0.00071
Table 3.1. The cumulative number of periodic orbits used up to the given period and the value of γ computed
from the spectral determinant up to that period for k = 10.0. The error bound for the Monte Carlo method is
computed using the 95% confidence interval from the fit.

then used in a multi-shooting Newton’s method to compute the periodic orbit. Appendix A explains

how to generate accurate seeds using the boundaries of the partitions and compute periodic orbits,

which are shown for k = 10.0 in black in Fig. 3.13. Once the periodic orbits are computed, the

greater eigenvalue of each orbit λp is computed by using an analytic formula for the linearization of

the Hénon map derived from Eq. (3.15). The values of λp and their corresponding periods are used

to construct the spectral determinant and find the zeros of Eq. (3.5). The escape rate computed from

periodic orbits becomes more accurate as higher periodic orbits are used, as shown in Fig. 3.6 and

Table 3.2.

3.5.1.1 Periodic orbit continuation

Once periodic orbits are computed for a given value of k, they can be used as seeds for

computing orbits for a nearby k value, because a small change in k results in a small change

in the locations of the periodic orbits. Thus, k can be varied iteratively and periodic orbits can

be computed over a range of parameter value, which is a technique known as periodic orbit
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Figure 3.6. Escape rate vs. period for k = 10 using the spectral determinant (black). The red band is the
Monte Carlo confidence interval 1.02814 ± 0.00071. Due to strong hyperbolicity for this k value, periodic
orbit escape rate is computed with high accuracy, and the periodic orbit escape rate converges exponentially
to the Monte Carlo value as a function of period.

continuation. Figure 3.7 shows the escape rate as a function of k for the interval [5.1, 10.0] using

both Monte Carlo and periodic orbit methods. Periodic orbits disappear or become stable in a

bifurcation below k = 5.699 are removed from the spectral determinant computation.

3.6 Computing Periodic Orbits over Hyperbolic Plateaus with

HLD

As k is lowered, the Hénon system no longer exhibits a binary symbolic dynamics. When k is

less than 5.699, the topological entropy begins to fall below ln(2) as periodic orbits become stable

or are lost in bifurcations, and the new symbolic dynamics for any given k value can require tens or

hundreds of symbols in order to characterize and compute periodic orbits. We employ a technique

called Homotopic Lobe Dynamics [53, 54] (HLD) to compute the system’s symbolic dynamics

and the corresponding partitioning scheme. This automated technique uses information encoded

in the intersections of finite-length segments of stable and unstable manifolds of periodic orbits

to compute symbolic dynamics and a corresponding partitioning scheme. In the HLD technique,

the stable and unstable manifolds of the anchor periodic orbit are first computed up to a primary

intersection point. Then the unstable manifold is iterated forward for a finite number of iterates, and
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Figure 3.7. The Monte Carlo (red) and spectral determinant (blue) escape rates as a function of k for
k ∈ [5.1, 10]. The two curves lie almost on top of each other. Above k = 5.699 (the red interval),
the symbolic dynamics is a full shift on two symbols and all periodic orbits up to period 13 are used in
the computation of γ. As k is lowered past 5.699, periodic orbits that disappear or become stable in a
bifurcation are removed from the spectral determinant computation. Inset: The spectral determinant escape
rate computed as a function of period for the k range [5.1,6.6], specified by the colorbar. The escape rate for
the bifurcation point, k = 5.699, is plotted in black.

the symbolic dynamics is computed from the intersections of the stable and unstable manifolds. The

finite-length segments of stable and unstable manifolds used for computing HLD are known as a

trellis, and the trellis for k = 5.4 is shown in Fig. 3.8a. The resulting symbolic dynamics computed

from HLD is shown in Fig. 3.8b and the corresponding partitioning scheme computed from HLD is

shown in Fig. 3.8c. The periodic orbits are computed from the partitioning scheme as in Sect. 3.5

and as described in Appendix A, and are shown in Fig. 3.9.

3.6.1 Escape rate over hyperbolic plateaus

We now focus on two fully hyperbolic intervals of k whose rigorous bounds were identified

by Arai [3], namely k ∈ [5.194, 5.5366] and k ∈ [4.5624, 4.5931]. Such hyperbolic intervals of

k are useful for computing escape rates from periodic orbits because no orbits are lost or created

in bifurcations as k is varied over the interval. Once periodic orbits are computed for a given

k value within a hyperbolic plateau, they can be computed for the entire interval using periodic

orbit continuation. Figure 3.10 shows the escape rate as a function of the highest period orbit used

using the spectral determinant for k = 5.4, chosen near the center of the hyperbolic plateau. The
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Figure 3.8. (a) The trellis for k = 5.4. (b) The transition graph computed from HLD. (c) The corresponding
partitions.
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Figure 3.9. All periodic orbits up to period 13 for k = 5.4.
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Figure 3.10. Escape rate versus period for k = 5.4 computed from periodic orbits (black) and Monte Carlo
(red band).

escape rate is then computed for an interval of k that spans k ∈ [5.194, 5.5366] using periodic orbit

continuation, shown in Fig. 3.11a. The same process is used to compute the escape rate for an

interval that spans k ∈ [4.5624, 4.5931]. The periodic orbits are first computed for k = 4.575 using

HLD, then periodic orbit continuation is used to compute the escape rate over the entire interval,

shown in Fig. 3.11b. For both hyperbolic plateau intervals, the escape rate computed from periodic

orbits accurately predicts the Monte Carlo escape rate within the hyperbolic plateau. As k is lowered

below the hyperbolic plateau bound, periodic orbits that become stable or are lost in a bifurcation

begin to distort the periodic orbit computation of γ, and the periodic orbit estimate begins to vary

from the true value. As k is increased above the hyperbolic plateau bound, orbits that exist at the

higher k value are not accounted for, and therefore the periodic orbit estimate of the escape rate

becomes less accurate.

3.7 Computing Multiexponential Escape With Nested Zones

For the k values studied in Sects. 3.5 and 3.6, the escape dynamics exhibits a single exponential

escape rate as in Eq. (4.1). As k is lowered below 4.28 the phase space can exhibit multiexponential

escape rates as in Eq. (4.2) and as shown for k = 4.1933 in Fig. 3.3. The inset of Fig. 3.12 shows

the phase portrait at k = 4.1933 which exhibits three distinct zones, namely Zone 0 (white), Zone

I (yellow), and Zone II (red). The period-2 inner structure arises from the stable and unstable
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Figure 3.11. Escape rates computed using the spectral determinant (blue) and Monte Carlo escape rate (red)
versus k for (a) k ∈ [5.1, 5.6] and (b) k ∈ [4.54, 4.62]. The shaded intervals denote the hyperbolic plateaus
[5.194,5.5366] (grey) and [4.5624, 4.5931] (magenta).
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manifolds of an inner fixed point with inversion which lies at the center of Zone II. All periodic

orbits within Zone II, except for the fixed point, have a periodicity which is a multiple of two.

Although the inner period-two structure in Zone II persists at greater k values, at k > 4.28, the

boundary of Zone II intersects the boundary of Zone I, and therefore the phase space always exhibits

single-exponential escape rates for k > 4.28. For k < 4.28, there exist intervals of k which exhibit

multiexponential escape rates.

3.7.1 Finding an inner hyperbolic plateau

None of the hyperbolic plateaus for the Hénon map noted in previous work [3, 25] are below

k = 4.28 where multi-exponential escape rates can be observed, so therefore a search for hyperbolic

plateaus exhibiting multi-exponential decay was done using HLD. A hyperbolic plateau can be

found using HLD by computing the symbolic dynamics as a function of k and finding intervals

of k where the symbolic dynamics does not change. The inner red zone in Fig. 3.12, Zone II,

can be treated as its own dynamical system which exhibits its own hyperbolic plateaus. When

Zone II is viewed under the Hénon map composed with itself, M2, there are intervals of k where

the topology of Zone II related to the topology of the full phase space for the hyperbolic plateaus

studied in Sect. 3.6. For example, at k = 4.3 under M2, the bottom half of Zone II has the same

exact transition matrix as the full phase space for the wider hyperbolic plateau studied in Sect. 3.6,

k ∈ [5.194, 5.5366]. Furthermore the manifolds and partitions of the system have the same topology

which is shown in Fig. 3.8. Under the singly composed map M , the topological entropy of Zone II

at k = 4.3 is equal to (1/2) ln(1.969)], which is exactly half of the topological entropy of the full

phase space for k ∈ [5.194, 5.5366].

Since the escape is only single-exponential at k = 4.3, this k value cannot be used to

study multiexponential escape rates using nested zones. Instead to find a k value where Zone

II exhibits a hyperbolic plateau and the escape rate is multiexponential, a binary search in HLD

was done below k = 4.28 to find the value of k for which Zone II has exactly half the

entropy as k ∈ [4.5624, 4.5931], the lower hyperbolic plateau studied in Sect. 3.6. The interval

k ∈ [4.1930, 4.201] was found to have exactly half the topological entropy as k ∈ [4.5624, 4.5931],

and the bottom half of Zone II under M2 has the same transition matrix as k ∈ [4.5624, 4.5931]



78

under M . The topology of the inner zone remains the same over this interval and therefore there

are no bifurcations in periodic orbits within the inner zone. The symbolic dynamics at k = 4.1933,

near the center of the plateau, is used to compute the trellis and partitions using HLD to compute

periodic orbits.

3.7.2 Monte Carlo computation for nested zones

Unlike in Sects. 3.5 and 3.6 where a detection line is used to define escape for computing γ

from the full resonance zone, the escape criterion for computing γI , γII , and γI,II is chosen based

on the boundaries of individual resonance zones. The initial points are chosen to be uniformly

distributed in a particular zone, and the escape rate is defined as entering a different zone. The zone

of a particular point is obtained using a point-in-polygon test. As points are mapped forward, their

zone is computed and the number of surviving trajectories is counted as a function of iterate. The

different escape rates for different zones can be computed by choosing the appropriate Zones for

the initial ensemble of points and escape criterion. For phase spaces such as the one shown in the

inset of Fig. 3.12, three distinct escape rates can be computed as summarized in Table II: escape

from Zone I, escape from Zone II, and escape from the union of Zones I and II, labeled as γI , γII ,

and γI,II respectively. The escape rate γI is computed by choosing the initial points in Zone I

and defining escape as entering Zones II or 0. The escape rate γII is computed by choosing initial

points in Zone II defining escape as entering Zones I or 0. The escape rate γI,II can be computed

by choosing initial points in the union of Zone I and Zone II and defining escape as entering Zone 0,

but since Zone II has ultimately the slowest escape rate, the result will be dominated by the points

starting in Zone II. Therefore γI,II is computed more accurately by choosing initial points in Zone

II and defining escape as entering Zone 0. The Monte Carlo curves for γI , γII , and γI,II , including

the two different ways of computing γI,II , are shown in Fig. 3.12 and in Table II.

3.7.3 Nested trellis

An important advantage of the HLD technique is the ability to target individual regions of phase

space by including the stable and unstable manifolds of additional periodic orbits, creating a nested

trellis [54]. This technique can be used to target Zones I and II in the inset of Fig. 3.12. To
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Starting Zone, Escape Zone Spect. det. MC

γI I, 0 ∪ II 0.3781 0.35823 ± 5e-5

γII II, 0 ∪ I 0.18039 0.18245 ± 3e-5

γI,II II, 0 0.16512 0.16406 ± 2e-5
Table 3.2. Summary of the three escape rates γI , γII , and γI,II along with the periodic orbit and Monte
Carlo escape rate computations for k = 4.1933.
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Figure 3.12. Monte Carlo escape rates for different zones for k = 4.1933. The initial points are chosen
uniformly from the starting zone, and escape occurs when a point enters the escape zone. In green, the Monte
Carlo escape rate for γI,II is computed using Zone II as the starting zone and the union of Zone I and Zone 0
as the escape zone . In black, a different computation for γI,II is computed using initial points in Zone II and
defining escape as entering Zone 0. The green and black lines are parallel, but the black line yields a better
estimate for the value γI , because the Monte Carlo for the green data includes points in the outer zone, which
have a faster initial escape, while the black line levels off more quickly. In blue, the Monte Carlo escape rate
for γI is computed, using initial points distributed uniformly in Zone I and defining escape as entering Zone
II or Zone 0. In red, the Monte Carlo escape rate γII is computed using initial points distributed uniformly
in Zone II and defining escape as entering Zone II or Zone 0. Inset: The two resonance zones. We denote the
unbounded white region as Zone 0, the bounded yellow region as Zone I, and the inner bounded red region as
Zone II. Because Zones I and II disconnected, i.e. the manifolds bounding them do not intersect each other,
the two resonance zones have separate escape rates.
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Figure 3.13. (a) Full trellis for k = 4.1933. (b) The partitions for k = 4.1933. (c) All periodic orbits for
k = 4.1933.

target the Zone I, the stable and unstable manifolds of the same outer fixed point are used as they

were in Sects. 3.5-3.6. To target Zone II, the stable and unstable manifolds of the the inner fixed

point with inversion are also included. The resulting tangle is shown in Fig. 3.13a. The additional

heteroclinic intersections included in the nested trellis lead to a better sampling of the topology of

phase space, compared to using the outer trellis alone. Using the nested trellis results in a more

accurate symbolic dynamics containing 351 nodes and 645 edges. The corresponding partitioning

computed from HLD is shown in Fig. 3.13b. The periodic orbits computed from the partitions are

shown in Fig. 3.13c. From the nested trellis, three different transition matrices are obtained. TI is

the transition matrix for Zone I, TII is the transition matrix for Zone II, and TI,II is the transition

matrix for Zones I and II. The transition matrix TI,II contains all the nodes and edges in TI and

in TII , but it also contains additional edges that connect Zones I and II. It does not contain any

additional nodes, as all nodes lie in either Zone I or Zone II. The topological entropies of TI , TII ,

and TI,II are ln(1.8311), ln(1.3766), and ln(1.8390) respectively. The topological entropy of Zone

II at k = 4.1933 is exactly half of that of the the full phase space at k ∈ [4.5624, 4.5931], and the

symbolic dynamics of M2 on the bottom half of Zone II is isomorphic to the symbolic dynamics of

the full resonance zone for k ∈ [4.5624, 4.5931].
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3.7.4 Periodic orbits and spectral determinants for nested zones

To compute the escape rate from a given zone using the spectral determinant, we include only

periodic orbits from that zone. The escape rate γI is the escape from Zone I, and therefore γI is

computed using periodic orbits that lie only in Zone I, computed from TI . The escape rate γII

is the escape rate from Zone II, and therefore γII is computed using only periodic orbits that lie

only in Zone II, computed from TII . The escape rate γI,II is the escape rate from both zones, and

therefore γI,II is computed using all periodic orbits, computed from TI,II . The three distinct escape

rates computed with periodic orbits and Monte Carlo simulation are shown in Fig. 3.14 and Table

II. Targeting the inner region and capturing the full topology using HLD allows for computing all

periodic orbits up to period 20, which yields an accurate value for the escape rate γII (red). Using

the nested trellis approach with the stable and unstable manifolds from both resonance zones also

yields an accurate result of the escape rate γI,II (black), even though our computation of HLD

has not extracted the exact symbolic dynamics and some periodic orbits may be missing from the

computation. The outer escape rate γI (blue) is the least accurate, which means some periodic orbits

are missing form the HLD computation, or more orbits of higher period are required to accurately

obtain the escape rate. Figure 3.15 shows the escape rates computed as a function of k using

periodic orbits using periodic orbit continuation, along with the corresponding Monte Carlo escape

rates. The inner escape rate γII is computed accurately over the entire interval. The escape rate for

both zones, γI,II , is computed most accurately at the k value where HLD is computed, k = 4.1933,

and captures part of the variation in escape rate as k is varied. The escape rate from the outer zone

γI is computed less accurately over this k range, but still yields a close result and captures some

of the variation as k is varied. The escape rates γI , γII , and γI,II are easily distinguishable and

detectable from both the periodic orbit and Monte Carlo escape rate computations.

3.8 Comparison with periodic orbit continuation from the full

horseshoe

Due to the monotonic nature of periodic orbits in the Hénon map as k is varied, the periodic

orbits found at k = 10 can be continued downward and computed for all of the different k values
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Figure 3.14. The periodic orbit and Monte Carlo computations of γI (blue), γII (red) and γI,II (black) using
periodic orbits (lines with star markers) and Monte Carlo (horizontal bands) for k = 4.1933.
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Figure 3.15. The escape rates γI (blue), γII (red), and γI,II (black) computed as a function of k using Monte
Carlo (bold with error bars) and with periodic orbits (finer line with no markers). Once the orbit becomes
stable or is lost in a bifurcation, it is removed from the spectral determinant calculation for all lower k values.
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studied in Sects. 3.5-3.7. This is not the case for all maps, and the HLD technique can be applied

in maps where the bifurcation of periodic orbits is not monotonic. Even in cases such as the Hénon

map, applying HLD still has benefits over using periodic orbit continuation. Due to the large number

of orbits and difficulty in distinguishing the orbits, periodic orbits were only computed up to period

13 for k > 5.699, for which the symbolic dynamics is a full shift on two symbols. By computing

HLD for the lower k values near 4.1933, periodic orbits were computed for one additional period,

at period 14. Targeting a particular k value using HLD allows for the ability to compute all periodic

orbits up to a higher period.

Another benefit of targeting a particular k value is that it requires the computation of fewer

orbits up to a given period. For example at period 20, the number of periodic orbits at k = 10 is

110,013. On the other hand at k = 4.1933, the total number of periodic orbits at period 20 is only

22,857. Another way to reduce the number of periodic orbits to compute is by restricting the escape

rate computation to a particular region of phase space. For computing γII in Sect. 3.7, only 143

periodic orbits up to period 20 were necessary to compute the escape rate.

3.9 Computing Multiexponential escape rates in a Mixed Phase

Space

A major goal of this work is to use periodic orbits to compute multiexponential escape rates

in a mixed phase space which contains stable islands embedded in a chaotic sea. The accurate

computation of escape rates in such a space would be important for demonstrating that periodic

orbit theory can be used to compute transport rates in realistic physical systems. Computing

periodic orbits in a mixed phase space has proven difficult, because the rich dynamics near the stable

islands leads to very complicated symbolic dynamics. Figure 3.16 shows the inner zone, Zone II, at

k = 3.888027. Within Zone II lies a period-6 zone which we call Zone III. The same three decay

rates defined in Sect. 3.7 can be defined for this trellis, except that The escape rate from Zone II is

then defined as the rate at which trajectories leave Zone II and enter Zone I or Zone III. The escape

rate γIII can be defined as the escape rate from Zone III, but we did not compute that decay rate

here since we have not computed periodic orbits in that Zone. The decay rates γI,II and γII are
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Figure 3.16. The inner Zone, Zone II at k = 3.888027. Inside the zone lies a stable island, which has a
period-6 structure. The period-6 stable island is associated with a period-6 orbit whose manifolds bound the
region. That inner region, shown as the white space within the stable island, is Zone III.

shown in Fig. 3.17. Although the escape rates computed from periodic orbits are close to the Monte

Carlo values, the data does not indicate that the convergence is exponential. It may be that some

periodic orbits are missing in the computation and were not found by HLD due to not having enough

length of the unstable manifold in the trellis. In addition, the convergence gets worse as k is varied.

It appears that in a mixed phase space, a small change in k leads to the bifurcation of low-period

orbits. This leads to difficulty in computing the escape rate, since the spectral determinant goes

to zero whenever the eigenvalue of a periodic orbit approaches 1. An accurate computation of all

periodic orbits up to a higher period should still lead to an accurate computation of the escape rate.

One way to improve the computation is by adding in more nested tangles, i.e., starting by adding in

the trellis associated with the period-6 island.

3.10 Varying the spectral determinant convergence by adding or

removing orbits

As a check of the convergence of the spectral determinant, we looked at how the convergence

varies when including multiple copies of orbits. For example in Fig. 3.18, the escape rate

convergence is shown using one copy of each orbit, two copies of each orbit, and three copies



85

Figure 3.17. The escape rates γI,II and γII for k = 3.888027 exhibiting a mixed phase space. The periodic
orbit computation for γI,II is shown in black circles, and the corresponding Monte Carlo decay rate is shown
as a black band. The periodic orbit computation of γII is shown with red x markers and the corresponding
Monte Carlo decay rate is shown as a red band.

of each orbit. It was found that the convergence gets worse when using multiple values, however,

the escape rate converges to the same rate nonetheless. The dynamical zeta function computation,

also shown in Fig. 3.18, converges more slowly than the spectral determinant.

In the case of a nested trellis with a stable period-6 island, the escape rate was difficult to

compute because we did not have a full grasp on the symbolic dynamics due to the rich inner

structure of the period-6 island. Figure. 3.19 shows the periodic orbit Monte Carlo escape rates

at k = 3.9. At this k value, there is an inner period-8 orbit that is close to being stable, and the

symbolic dynamics computation is missing many important orbits, and therefore does not converge

very close to the true value. In an attempt to improve the convergence, we weighed the different

periodic orbits by different amounts based on their contribution. We counted the period-1 inner

fixed point with inversion twice, we counted the period-6 orbit bounding the resonance zone once,

and we counted all other orbits in the inner zone four times–these are the most important orbits for

computing the inner escape rate. However, the inclusion of orbits multiple times seemed to make the

escape rate computation worse rather than better. It is our conclusion that the best way to compute

escape rates from periodic orbits is to include each periodic orbit once.
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Figure 3.18. The escape rate computed using the spectral determinant (star markers) and dynamical zeta
function (circle markers) as a function of highest period orbit used using a single copy of every orbit (blue),
two copies of each orbit (green), and three copies of each orbit (red).

Figure 3.19. The escape rate computed with the spectral determinant (dot markers) and Monte Carlo (black
line) for Zone II for k = 3.9. In blue, the periodic orbit is shown weighing the inner fixed point two times,
the period-6 resonance orbit once, and everything else 4 times. This did not improve the convergence of the
escape rate and only made it worse.
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3.11 Computing periodic orbits from symbolic dynamics

The computation of periodic orbits from Newton’s method requires an initial guess. The HLD

technique allows for choosing an intial guess based on partitions and symbolic dynamics. Each

periodic orbit has a symbolic itinerary representing it, and the initial guess for each point in a

symbolic itinerary is chosen as the center of the partition with the corresponding symbol. For

example, for the full shift on two symbols, every periodic orbit can be labeled using a sequence

of 0’s and 1’s. The two labels correspond to the partitions shown in Fig. 3.5. The center of each

partition is used as a seed. The seed points are then used in a Newton’s method to solve an equation

of the form 

M(x0) = x1

M(x1) = x2

...

M(xn−1) = xn

M(xn) = x0


(3.16)

where M is the map and xi are coordinates of seed points in the periodic orbit of period n. For

example the unknown periodic orbit whose itinerary is 010 consists of a sequence of three unknown

points p0p1p2. The Netwon’s method to solve becomes


M(p0) = p1

M(p1) = p2

M(p2) = p0


(3.17)

The initial guess in Newton’s method is the sequence of points p0p1p2 = s0s1s0 where s0 is the

center of partition 0 and s1 is the center of the partition 1.

Since the partitions are bounded by segments of stable and unstable manifolds, the partitions

for longer symbol strings can be computed by iterating the boundaries of the partitions forward

or backward to cut the partitions into smaller portions. For example, one can look at partitions



88

-10 -5 0 5

x

-10

-5

0

5

10

y 00

01

10

11

00

11
01

10

Figure 3.20. A refinement of the full shift on two symbols. The extended stable manifold (red) cuts the
partitions for 0 and 1 into four new partitions representing the two-symbol strings 00, 01, 10, and 11. This
symbolic dynamics generates the same periodic orbits and therefore has the same topological entropy as the
full shift on two symbols, ln(2). The refined partitions give better initial guesses for periodic orbits.

corresponding to symbol strings of length two. This is done by iterating the stable manifold, whose

extra intersections with the partitions cut them into peices. For the full shift on two symbols, this

results in cutting the partitions 0 and 1 in Fig. 3.5 into four partitions, 00, 01, 10, and 11 in Fig. 3.20.

The seed point for the period-three orbit 010 now becomes s01s10s00, by looking one symbol string

ahead, up to cyclic permutation, to choose a seed point based on a two-symbol string for each point

in the orbit. The four-symbol symbolic dynamics is topologically forced by the new heteroclinic

intersections formed by the longer stable manifold, and has the same topological entropy of ln(2).

The partitions in Fig. 3.20 yield better seeds, since each seed point is chosen based on refined

partitions from the four-symbol symbolic dynamics. The partitions can be refined for arbitrarily

long symbol strings by iterating the stable manifold more and more times.

Refining the partitions only based on longer symbol strings requires extra computational time

for iterating and cutting the manifold segments, and also requires highly accurate computations

of the manifold segments to begin with. Another method to obtain better seeds from partitions

is to map the partition boundaries backwards. Since the implementation of HLD computes a

longer unstable manifold and a short stable manifold, partitions are typically formed using long

unstable manifold segments with higher curvature and short stable manifold segments with lower
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curvature. Using seed points from partition rectangles with longer manifolds and high curvature

is unfavorable because the region of phase space is highly stretched after one iterate, making it

less likely that Newton’s method will terminate on the desired solution. Mapping the rectangles

backwards balances the length of the stable and unstable segments bounding partitions and results in

a partition element with less curvature, producing a better seed point for approximating the periodic

orbit. The extra iterates taken are accounted for in constructing the formula for the periodic orbit

solved by Newton’s method.

The partitions in Fig. 3.20 are used for computing the periodic orbits used for the interval where

the Henon map exhibits a full shift on two symbols. For the rest of the decay rate combinations

in Chapter 3, a combination of the cutting and mapping techniques is used. The average of the

inverse radius of curvature normalized by the total euclidean length of the manifold is computed for

the stable and unstable segments of each partition element. Maximum tolerances for the average

curvature and for the width of a partition element are chosen for both the stable and unstable

manifolds. Denote the set of all partition elements as Σ. A recursive algorithm is applied which

terminates when the width and curvature tolerance criteria are satisfied for both stable and unstable

segments for all elements of Σ. For each partition element σ in S, the partition element is first

mapped backward until the diagonal width of the partition is at a minimum, and the curvature is

comptued at each iterate. The number of iterates with the lowest curvature is chosen for the partition

element, and the curvature and width criteria are computed for the mapped partition element. If

either criteria is not satsfied in the unstable (stable) direction, then the stable (unstable) manifold

is iterated to cut the unstable (stable) manifold, and new partition elements are computed based on

two-symbol symbol strings by adding one symbol to the beginning or end of the symbol string for

σ. Then σ is removed from Σ and replaced with the new set of partition elements for two-symbol

strings whose prefix or suffix is the symbol string for σ. Then the partition elements are again

mapped backward, and the algorithm is then repeated for all elements of Σ until they all satisfy

the width and curvature tolerances. This algorithm generates a list of substrings which are the

minimum length required to satisfy the curvature and width criteria, the seeds generated from

partition rectangles corresponding to the symbol strings computed, and the number of backward

iterates taken for each partition rectangle to satsify the criteria. Then for a given symbol in a given
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symbolic itinerary for a periodic orbit, the seed is chosen based on the substring which matches the

periodic itinerary for the largest number of iterates.

3.12 Concluding Remarks

We have learned from this study that single-exponential and multi-exponential escape rates can

be reliably computed using periodic orbits from HLD in lieu of a Monte Carlo simulation requiring

tens of billions of orbits. We demonstrate that the result of HLD is very accurate within hyperbolic

plateaus where no periodic orbits become stable or are lost in a bifurcation over a range of parameter

value. We also compute distinct escape rates from different resonance zones using periodic orbits

for a parameter range exhibiting multiexponential escape rates.
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Chapter 4

Computing ionization rates in a

chaotic Rydberg atom using periodic

orbits

4.1 Overview

A classical hydrogen atom can be modeled as an electron orbiting a nucleus. The electron is

a negatively charged point-mass under the influence of the electric field generated by a stationary

proton. The electron’s dynamics can be described by a Hamiltonian, and, to make the system

chaotic, one can add an external field by adding an extra term to the Hamiltonian. The hydrogen

atom in external fields can also be studied experimentally, and the ionization of the atom can be

measured by placing a detector sufficiently away from the nucleus so that the electron is detected

once it reaches a certain distance from the nucleus. Using the system’s Hamiltonian, a Monte

Carlo simulation launching millions of orbits can be used to compute the same ionization rate by

measuring when each simulated electron passes a given distance from the nucleus. The number of

survivors as a function of time can be of the form

N(t) = N0e
−γt, (4.1)

91
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where N(t) is the number of surviving trajectories as a function of time, N0 is a constant, and

γ is the asymptotic escape rate. Instead of running a Monte Carlo simulation launching millions

of orbits, a sum over tens or hundreds of properly chosen periodic orbits can accurately compute

the ionization rate using a formula called the spectral determinant, described in Chapter 3. A firm

grasp of the structure of the periodic orbits is required to obtain accurate the ionization rate using the

spectral determinant. One way to understand the structure of the periodic orbits is using the system’s

symbolic dynamics. In a Hamiltonian phase space, the symbolic dynamics can be represented by a

set of distinct regions of phase space, the nodes, and the allowed transitions between them in time,

the edges. Once the system’s symbolic dynamics is known and a symbol is assigned to each node,

periodic orbits can be detected by looking for cycles in the graph. The location of the periodic orbits

can be found by searching in the regions of phase space associated with each symbol in the symbol

sequence. We wish to compute escape rates in a classically chaotic atomic system from the spectral

determinant by computing periodic orbits using improved methods of computing symbolic dynamics.

The ability to systematically compute symbolic dynamics, partitions, and periodic orbits allows for

applying periodic orbit theory to a broad range of physical applications, including studying the role

of periodic orbits in quantum chaos in a real physical system, which is a future goal of this work.

One challenge we wish to address is computing escape rates in a mixed Hamiltonian phase

space, where stable islands are embedded in a chaotic sea. The rich fractal structure of escape

dynamics near the stable islands leads to two complications in computing the spectral determinant.

The first complication is that the symbolic dynamics becomes very complex, requiring hundreds of

symbols, and more complicated periodic orbits are necessary to converge to the true escape rate.

The second complication is that the system no longer exhibits a single exponential escape rate as in

Eq. (4.1), but rather a multiexponential escape rate given by

N(t) = N0e
−γ0t +N1e

−γ1t +N2e
−γ2t + ..., (4.2)

where N0, N1, N2 are constants and γ0, γ1, γ2 are different escape rates representing different

regions of phase space. When the number of terms in Eq. (4.2) is infinite, the resulting curve is

an algebraic escape rate.
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We address these two complications by using a technique called homotopic lobe dynamics [53,

54] (HLD), which uses the topological forcing by intersections of stable and unstable manifolds of

a few anchor orbits to compute symbolic dynamics and partition the phase space. Using HLD, an

arbitrarily accurate partition of phase space can be computed by incorporating longer and longer

segments of the stable and unstable manifolds of anchor orbits. Moreover, the periodic orbits are

identified by which region of phase space they occur in, and the distinct escape rates γi in Eq. (4.2)

can be computed by computing the spectral determinant using only periodic orbits that lie in the

region from which escape is being computed from. The HLD technique can be used to specifically

target the symbolic dynamics of a given region to search for periodic orbits in that region. Once the

periodic orbits and their eigenvalues are computed, the spectral determinant is used to compute the

escape rate. The escape rate computed from the spectral determinant is compared to Monte Carlo

computations. This work augments previous studies on heteroclinic tangles by using the symbolic

dynamics computed from HLD to compute periodic orbits and transport rates. For other approaches

to symbolic dynamics of tangles, see Refs. [12–15, 22, 23, 64, 65].

Although we provide the machinery for computing the spectral determinant in a mixed phase

space, we focus this study on a system where the accuracy of the symbolic dynamics can be verified.

For a certain range of electron energy and magnetic field, the dynamics of the hydrogen atom

exhibits a ternary horseshoe, meaning that the topological entropy is ln(3) and the dynamics can

be described by a full shift on three symbols. For the range of parameter where the topological

entropy is ln(3), the symbolic dynamics does not change and the interval of parameter is called a

hyperbolic plateau. By computing periodic orbits over the ranges of hyperbolic plateaus, we can

accurately compute the escape rate using the spectral determinant. We also study what happens to

the convergence of the escape rate as the parameter is varied within and away from the hyperbolic

plateau.
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Another future goal of this work is to compare the techniques of HLD with transition state

theory. Both methods use invariant manifolds [45] to compute ionization rates in Hamiltonian

atomic systems modeling chemical reactions, however, the method of HLD requires a Poincaré

surface of section that intersects with the periodic orbit, while transition state theory requires a

Poincaré surface of section that does not intersect the periodic orbit. Both techniques are promising

for studying chemical reactions in higher dimensions.

4.2 Model system and coordinates

The hydrogen atom in parallel electric and magnetic fields is modeled by the Hamiltonian

H = p2

2 −
1
r

+ 1
8B

2(x2 + y2) + z, (4.3)

Where x,y, and z are the physical spatial coordinates, E and B are the scaled energy and magnetic

field, written as B = B̃F̃−
3
4 and E = ẼF̃−

1
2 , where B̃ , F̃ , and Ẽ are the physical magnetic field

strength, electric field strength, and electron energy respectively in atomic units (e = ~ = me = 1).

We fix B = 3.5 and F = 1.0 and vary the scaled electron energy E. The Hamiltonian in Eq. 4.3

has three degrees of freedom, however there exists a rotational symmetry in H , and, Eq. 4.3 can be

written in terms of cylindrical coordinates ρ, z, pρ and pz as

H(ρ, z, pρ, pz) = 1
2(p2

ρ + p2
z) + V (ρ, z) = E, (4.4)

where

V (ρ, z) = − 1√
ρ2 + z2 + z +B2ρ2 (4.5)

Equations 4.4 and 4.3 have a Coulomb singularity at the origin, and therefore it is useful to use

parabolic coordinates u, v, pu, and pv given by

u = ±
√
r + z, (4.6a)

v = ±
√
r − z, (4.6b)
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and

pu = vpρ + upz, (4.7a)

pv = upρ − vpz, (4.7b)

where

r =
√
ρ2 + z2 = u2 + v2

2 . (4.8)

We allow u and v to take both positive and negative values corresponding to a fourfold covering of

the cylindrical coordinates. Equations 4.6b and 4.7 have the following inverse transformations:

ρ = uv, (4.9a)

z = 1
2(u2 − v2), (4.9b)

pρ = vpu + upv
u2 + v2 , (4.10a)

pz = upu − vpv
u2 + v2 . (4.10b)

We finally introduce the effective Hamiltonian which we use for all subsequent analysis,

h(u, v, pu, pv) = 1
2(p2

u + p2
v) + V (u, v)− 2, (4.11)

where V is given by

V = −E(u2 + v2) + 1
8B

2(u4v2 + u2v4) + 1
2(u4 − v4). (4.12)

Setting h = 0 in this Hamiltonian leads to the same trajectories as setting H = E, although

parameterized by a new time-like variable s, defined by ds
dt = 1

2r . We define a two-dimensional

Poincaré surface of section in the four-dimensional u, v, pu, pv phase space by the constraints

u = h = 0. A point on this surface is specified, up to the sign of pu , by its coordinates v and pv.
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Figure 4.1. The contour plot for potential V in u−v space for E=1.0 and B=3.5. The trajectory of the saddle
periodic orbits projected onto the u− v space are shown in red.

We define a discrete-time map Mn using this Poincaré surface of section for integers n. We define

the continuous-time mapMs using the continuous-time variable s.

4.3 Monte Carlo computation of escape

We begin our analysis of the ionization rate for this system by first introducing the Monte Carlo

method for computing the ionization rate. The Monte Carlo method serves as a benchmark for a

comparison to the ionization rate computed from periodic orbits using HLD later in Sect. 4.5.2. An

initial ensemble of trajectories is chosen near the fixed point, and the points are mapped forward in

time using the continuous- or discrete-time version of the map. fitting to the number of survivors as

a function of time using a fitting function in the form of Eq. 4.1. The escape rate can be computed

both for the discrete-time mapping Mn and the continuous-time mappingMs, and each mapping

yields a different escape rate. The continuous time version of escape counts the number of surviving

trajectories as a function of the continuous time variable s. The discrete time version of escape rate

counts the number of survivors as a function of iterates of the Poincaré mapping defined in Sect. 4.2.
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Figure 4.2. The boundary defined by the stable and unstable manifolds of the outer two fixed points, in v, pv

space for E = 1.0 and B = 3.5. The red region is the surviving region, and the white region is the escaped
region. The small green square represents the initial ensemble for the Monte Carlo.

4.3.1 Discrete-time Monte Carlo decay rate

In the discrete-time case, we define our boundary for escape using the stable and manifolds of

the hyperbolic fixed points in the plane defined by the Poincaré mapping, u = 0. Fig. 4.2 shows

the initial and escaped regions for this computation. Fig. 4.3 shows the number of survivors as

a function of iterate using the Poincaré surface of section, along with the fitting function used to

compute the Monte Carlo ionization rate computed from fitting to the data. The fit is computed by

taking the log of the data and using linear regression to extract the ionization rate. The error bars

are computed as 95 percent confidence intervals on the fit.

4.3.2 Continuous-time Monte Carlo decay rate

For continuous-time decay, we define our escape using the coordinate z = 1
2(u2+v2). Escape is

defined when this value goes below -1.0, which is sufficiently far from the nucleus that the electron

will never return, and thus ’dies.’ The number of survivors as a function of time is shown in Fig. 4.4.
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Figure 4.3. Number of survivors as a function of iterates using the Poincaré return map (red) for E = 1 and
B = 3.5. The fit line used to compute the escape rate is shown in red.

Figure 4.4. Number of survivors as a function of iterates using continuous-time t for E=1.0, B=3.5. The fit
line used to compute the escape rate is shown in red.
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4.4 Lobe area estimate

Another method of computing the ionization rate is with the lobe area estimate. In this method,

the ionization rate is approximated based on the turnstile in 4.6. The upper-right and lower-left

lobes in the figure are escape lobes. The ionization rate estimated from lobe area, γapprox, can be

computed using the formula

γapprox = Aescape
Aresonance

, (4.13)

where Aescape is the sum of the areas of the escape lobes, and Aresonance is the area of the

interior zone, which is shown by itself in Fig. 4.2. The lobe area estimate method can also be

improved upon using higher-order corrections, as described by Rom-Kedar [64, 65]. It would be

interesting to compare the results in this paper with the method using higher-and-higher-order lobe

area corrections described by Rom-Kedar.

4.5 Computing decay rate from the ternary horseshoe using

periodic orbits

As we will show, the ionization rate can be computed with much fewer trajectories by utilizing

HLD and computing periodic orbits. As in the previous chapters, the trellis is computed from the

heteroclinic tangle attached to the fixed points. Then, the symbolic dynamics and partitions are

computed using HLD. Finally, the periodic orbits are computed, and the ionization rate is computed

from the periodic orbits using the spectral determinant. We choose the parameterB = 3.5, E = 1.0

because of its simple symbolic dynamics which is a full shift on three symbols. For B = 3.5, the

trellis maintains a full shift on three symbols for the E interval [0.324, 1.3]. This interval of E

was detected by computing the symbolic dynamics as a function of E and detecting intervals over

which it does not change. Figure 4.5 shows the topological entropy as a function of E, which is

equal to the log of the largest eigenvalue of the transition matrix representing the system’s symbolic

dynamics. The stable and unstable manifolds computed for applying HLD are are shown in Fig. 4.6.

The homotopic lobe dynamics technique allows us to partition this into three regions and label them

as 0,1, and 2 shown in Fig. 4.7. The corresponding transition graph is shown in Fig. 4.8. Seeds
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Figure 4.5. The topological entropy as a function of E computed using HLD. The interval [0.32, 1.3] is found
to be a hyperbolic plateau with topological entropy equal to ln(3).

are chosen based on the partitions, and the periodic orbits are computed using a multi-shooting

Newton’s method. Appendix A describes the computation of a seed based on the partitions.

4.5.1 Decay rate results using periodic orbits

Once all the periodic orbits are computed, the decay rate is computed using the spectral

determinant. The algorithm for computing the discrete-time ionization rate using the discrete-time

spectral determinant is described in Sect. 3.2. The continuous-time ionization rate is computed in

the exact same fashion, only replacing Cn in Eq. 4.15 with

Cn =
∑
p

npe
−s∗Tp

∞∑
r=1

1
|det(1−M r

p )|δrnpn, (4.14)

where Tp is the continuous-time period of the periodic orbit and e−s replaces z, i.e., s is th variable

that is varied in order to find the zeros of the spectral determinant.

Fig. 4.10 shows the approximation to the decay rate using periodic orbits. The data on the far

right of the figure uses all periodic orbits, and therefore represents the best estimate for the decay

rate.
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Figure 4.6. The stable and unstable manifolds for the two outer fixed points, i.e. the trellis for E=1.0, B=3.5.
The HLD technique computes the topological entropy of this trellis as ln(3), with symbolic dynamics shown
in Fig. 4.8, and the corresponding partitions are shown in Fig. 4.7.

Figure 4.7. The partitions generated by HLD. The corresponding symbolic dynamics is shown in Fig. 4.8
and the tangle used to compute the partitions and symbolic dynamics is shown in Fig. 4.6.
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Figure 4.8. The transition graph for the ternary horseshoe. The corresponding partitions for E=1.0, B=3.5 are
shown in Fig. 4.7 and the tangle used to compute the partitions and symbolic dynamics is shown in Fig. 4.6.

Figure 4.9. All periodic orbits up to period 10 for E=1.0, B=3.5, computed from the symbolic dynamics.
There are in total 9382 orbits.
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Figure 4.10. Approximation to the decay rate using periodic orbits at B=3.5, E=1.0. All periodic orbits are
computed up to a given period, and the decay rate is plotted as a function of the highest period orbit used
in the spectral determinant computation. The red lines are the discrete-time periodic orbit decay rate (red
line with asterix markers) and the Monte Carlo decay rate (red band). The red lines are the continuous-time
periodic orbit decay rate (blue line with asterix markers) and the Monte Carlo decay rate (blue band). The
lobe area estimate for the discrete-time decay rate is shown in black. Although the system is fully hyperbolic,
the lobe area estimate does not accurately capture the true decay rate.

4.5.2 Periodic orbit continuation

Once periodic orbits are computed for a given electron energy value, they can be used as seeds

for computing orbits for a nearby electron energy value, because a small change in electron energy

results in a small change in the locations of the periodic orbits. Thus, the electron energy E can be

varied iteratively and periodic orbits can be computed over a range of parameter value, which is a

technique known as periodic orbit continuation. When a periodic orbit disappears or is no longer

stable, it is removed from the computation. Fig. 4.11 shows the result for discrete-time decay at

period 10 for different E values where the symbolic dynamics remains the same.

4.5.3 Modifying the definition of escape by removing a region of phase space

We showed in Sect. 4.5.2 that given the periodic orbits up to a given period within the resonance

zone, one can compute the escape rate from the resonance zone, i.e. the ionization rate.Another

benefit of the periodic orbit computation is that regions of phase space can be removed by removing
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Figure 4.11. Ionization rate computed for the E interval [0.29, 1.0]. The discrete-time ionization rate is
shown in red using the spectral determinant and in black using a Monte Carlo technique. The continuous-time
ionization rate is shown in blue using the spectral determinant and in magenta using a Monte Carlo technique.
The lowest E value with a topological entropy of ln(3) is plotted in green.

the periodic orbits in that region. Computing the escape rate with a removed region has physical

applications. For example, in an experiment where the detector is closer to the nucleus, the escape

rate measured by the detector can be computed by removing the periodic orbits that lie past the

detector. Although the two rates are physically very similar, we will refer to the escape rate using the

removed region as the escape rate, and the original definition of escape will be called the ionization

rate.

We compute the Monte Carlo and periodic orbit escape rates using this new definition of escape.

For computing the escape rate with removed region, Fig. 4.12 shows a chosen removed region

in black. All periodic orbits that land in the chosen region are removed from the escape rate

computation, and hose periodic orbits are not shown. Out of the original 9381 periodic orbits,

3080 are removed from the computation. The periodic orbits that are removed have points that

lie inside the removed region, but they also have points that land outside the removed region, so

removing them still removes relevant information from the periodic orbit computation. However,

the escape rate computed using the remaining set of orbits should still converge to the true value as

more and more orbits are included.
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Figure 4.12. The periodic orbits computed up to period 10 with a chosen removed region. The periodic
orbits that land in the black region are removed from the computation, and are not shown. The corresponding
escape rate computed is shown in Fig. 4.13.

To compute the Monte Carlo simulation with the removed region, the initial ensemble of

trajectories is iterated exactly the same as in Sect. 4.3, only now there is an additional criterion

for escape, which is landing in the black region. In addition to the trajectories that are said to escape

by a certain iterate in Sect. 4.3, points that land in the black region are also said to have escaped.

This leads to an escape rate that must be greater than the ionization rate computed in Sect. 4.3.

Figure 4.13 shows the approximation to the decay rate as a function of the highest period orbit used,

which shows a good convergence within the Monte Carlo error bounds. The escape rate computed

using the removed region in Fig. 4.13 converges more slowly than the ionization rate in Fig. 4.10

computed using all orbits.

4.6 Studying the semiclassical version of the system

Discovering the ternary horseshoe in a realistic, classically chaotic atomic system is the crux of

this work so far and leads to the easy computation of periodic orbits. Now that we have computed

periodic orbits for this system, we can study it in depth using periodic orbit theory, including the

system’s quantum and semiclassical counterparts. Cvitanovic et. al [17] previously analyzed the

quantum and classical correspondence using periodic orbits in the three-disk scattering system due

to its simple symbolic dynamics. In our system, we can apply the same analysis. Once this analysis

is completed, it can be used to guide novel experiments studying quantum chaos. The algorithm
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Figure 4.13. The approximation to the escape rate as a function of the highest period periodic orbit used in
the computation (asterisks), while removing the periodic orbits that land in a certain chosen region, which is
shown in Fig. 4.12. The black rectangle shows the corresponding Monte Carlo escape rate bounds.

used for computing the classical spectral determinant is shown in Sect. 3.2, and the semiclassical

spectral determinant is computed in the exact same fashion, only replacing Cn from Eq. 4.15 with

the following trace coefficients:

Cn =
∑
p

npe
−s∗Tp+i~−iπm/2

∞∑
r=1

1
| det(1−M r

p )|δrnpn, (4.15)

where Tp is the continuous-time period of the periodic orbit, s is th variable that is varied in order

to find the zeros of the spectral determinant, and i =
√
−1 and m is the Maslov index. The Maslov

index is equal to the number of times the unstable vector rotates around the trajectory as one moves

along it.

In order to complete the analysis, the quantum resonances must be computed using the periodic

orbits. Our collaborator Hiroshi Teramoto has done some initial computations for quantum

resonances using a technique called complex scaling. Once resonances are found, the classical

periodic orbits will be continued using periodic orbit continuation into that set of parameter values,

which could be complex.

4.6.1 Computing the Maslov index from symbolic dynamics

Since the Maslov index is a purely topological quantity that does not vary with coordinate

transformations, the Maslov index should be computable from the symbolic dynamics alone. We
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have come up with a scheme where each symbol contributes a certain number of turns. For example,

in Fig. 4.7, the partitions labeled 0 and 2 each contribute 1 to the Maslov index, and the partition

labeled 1 contributes 2 to the Maslov index. For a periodic orbit with itinerary 0121, for example,

the total Maslov index is 1+2+1+2 = 6. Although we have not proven this scheme, we showed by

computing the Maslov index numerically that this scheme works up to period 7, and we postulate

that it should work for higher periods as well.

4.7 Concluding remarks

We have computed periodic orbits in a full ternary horseshoe over a range of initial electron

energies in the hydrogen atom in parallel electric and magnetic fields. The lower and upper limits

of the hyperbolic plateau exhibiting a ternary horseshoe were found using HLD. The ionization rate

was accurately computed from the periodic orbits for all electron energies within the hyperbolic

plateau. The escape rate was also computed in the case where a region of phase space is removed,

which results in removing the periodic orbits from the Monte Carlo escape rate computation.

The future goal of this work is to compute the semiclassical resonances. Further work would

include finding other hyperbolic plateaus, and computing multi-exponential escape rates for this

system as in Sect. 3.7.



Chapter 5

Understanding Transport Bottlenecks

By Measuring the Network

Betweenness Centrality

Having a firm grasp on the symbolic dynamics of a system can potentially provide more

information than just transport rates. For example, one can ask whether the symbolic dynamics

can help to find the locations of transport bottlenecks. A transport bottleneck is a region of phase

space responsible for a large portion of transport between two other regions of phase space. Given

the two zones, Zone I and Zone II in the inset of Fig. 3.12 from Chapter 3, for example, consider

the set of trajectories that move from Zone I to Zone II. Regions regions which many of those

trajectories pass through are called transport bottlenecks. Computing transport bottlenecks is an

important problem in chemical reaction dynamics, and other techniques of computing transport

bottlenecks utilize normal form theory and transition state theory [45–47, 72]. We wish to use

network properties of symbolic dynamics to infer useful information about phase space geometry.

In this preliminary work, we try to infer information about transport bottlenecks from the system’s

symbolic dynamics computed with HLD.
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5.1 Defining communities in a symbolic dynamics network

We choose a parameter value of the Hénon map, k = 3.963, which contains a very complex

symbolic dynamics, exhibiting two zones just like the system studied in Fig. 3.12. One method to

visualize complex graphs such as the symbolic dynamics transition graph for k = 3.963 is using

the force-directed layout [30], which uses attractive forces between adjacent nodes and repelling

forces between distant nodes. Shown in Figure 5.1, this visual representation of the graph implies

that there may be a community structure within the graph. A community in a graph is a set of

nodes that are denseley connected internally, but may not be densely connected to nodes outside the

set. For Fig. 5.1, we can visually infer that some community structure exists, i.e, nodes on the left

of Fig. 5.1 are clustered together and nodes on the right of Fig. 5.1 are clustered together, without

having many connections between them. Although this is not a rigorous definition of detecting

communities, we use this as a justification for defining Zone I to be its own community and Zone

II to be its own community in the subsequent analysis. A plethora of graph algorithms exist for

detecting communities in networks [24]. A future approach of this work will use community

detection algorithms for finding communities, rather than defining them based on zones. From

now on, we will refer to the set of nodes in Zone I as Community I, and the set of nodes in Zone II

as Community II. We will start the analysis of this graph along with the chosen set of communities

using a modification of a quantity called betweenness centrality.

5.2 Modified Betweenness Centrality

The betweenness centrality is a way to measure the ”importance” of nodes by seeing how many

shortest paths pass through a given node.

CB(g) =
∑
(a,b)

nab(g)
Nab

(5.1)

where nab(g) is the number of shortest paths from a to b passing through g, and Nab is the total

number of shortest paths from a to b. In the original definition of betweenness centrality, the sum

in Eq. 5.1 is taken over all pairs of nodes (a, b). This gives the ”importance” in a node as viewing
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Figure 5.1. The symbolic dynamics network for the Hénon map for k = 3.963.

how it can transport material throughout all the other nodes. However, we are interested in viewing

the transport between zones. We modified this definition by narrowing down which pairs (a, b) we

include in the sum. Therefore we define CB,i→o as the betweenness centrality from inner to outer,

where the sum is taken over all pairs a, b where a is in the inner region and b is in the outer region.

Likewise the value CB,o→i is defined as the betweenness centrality from outer to inner, where the

sum is taken over all pairs a, b where a is in the outer region and b is in the inner region. In both

cases, the value CB,i→o or CB,o→i can be computed for any node g in the graph. We propose

that this modified version of betweenness centrality can reveal transport structure in the symbolic

dynamics network, and can help identify transport bottlenecks. We computed betweeness centrality

for all the nodes for our test case, the Hénon map at k = 3.963. The distribution of CB,i→o is

shown in Fig. 5.2, and the distribution of CB,o→i is shown in Fig. 5.3. In both cases, a majority of

the nodes do not have a high value of betweenness centrality, which indicates that not all nodes are

equally responsible for transport between the two zones.
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Figure 5.2. The distribution of betweenness centrality from Zone II to Zone I, CB,i→o.

Figure 5.3. The distribution of betweenness centrality from Zone II to Zone I, CB,o→i.
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Figure 5.4. The betweenness centrality CB,o→i computed as a function of the number of backward iterates
to the capture lobe of Zone II. The nodes with a line through them indicate the subgraph studied in Fig 5.5.

5.3 Computing betweenness centrality as a function of the

’distance’ to the capture lobe

The two zones Zone I and Zone II each have an escape lobe and a capture lobe that are

responsible for transport between them. All nodes that escape a given zone in one iterate must

pass through an escape lobe, and are captured in a capture lobe. In Zone I, a node that that has just

been captured or just escaped might have high betweenness centrality, and this might explain the

outliers in Figs. 5.2 and 5.3. It was found by inspecting the outlying nodes, that all the nodes with

high betweenness centrality CB,i→o lie in Zone I, and the nodes with high betweenness centrality

CB,o→i are in Zone II. We want to know about the relationship of betweenness centrality to the

transport between zones, so therefore, we plot CB,i→o against the number of iterates it takes for the

node to escape from Zone II, and we plot CB,o→i as a function of the number of iterates it takes

for the node to be captured by Zone I. Figure 5.4 shows a scatter plot over all nodes in Zone II

plotting the betweenness centrality CB,o→i as a function of the number of backward iterates to the

escape capture of Zone II. As expected, there is a downward trend showing that the nodes with

the highest betweenness centrality have only a few iterates to the escape lobe. The nodes with the

highest betweenness centrality seem to lie on a straight line. The slope of this line is equal to the
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Figure 5.5. The distribution of betweenness centrality from Zone II to Zone I, CB,i→o.

total number of nodes in Zone I. The reason for this becomes clear when studying the subgraphs

containing the chains. However, it was initially surprising why the betweenness centrality lies on

straight lines. The reason for this is due to chains of nodes. That is, for the nodes with highest

betweenness centrality, there is a long chain of nodes, with little or no branching out, that leads to

the node that escapes. An example of such a chain is shown in Figs. 5.5- 5.6. The jumps and drops

in the betweenness centrality occur exactly where there are incoming nodes (for jumps) or outgoing

nodes (for drops) into the chain, as shown in Fig. 5.6.

The chaining leads to all the nodes in the chain contributing to the centrality computed from

Eq. 5.1, and leads to a high betweenness centrality value computed for that node. When an incoming

node comes into the chain, it adds to the centrality. When an outgoing node comes out of the chain,

then some shortest paths can go out of the zone without passing through the final node, leading

to a drop in the betweenness centrality computed. This shows how the chaining structure of the

symbolic dynamics can be computed from our modified version of betweenness centrality.
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Figure 5.6. The distribution of betweenness centrality from Zone II to Zone I, CB,i→o.

5.4 Conclusions and future work

This work is still in its early stages and we are trying to address bigger questions. For one, it

is not clear whether the structures noted here are a consequence of the method of computation of

symbolic dynamics, or whether they are an inherent property of the system. In order to test this,

it would be useful to compute betweenness centrality using symbolic dynamics computed from

different methods. Futhermore, the definition of communities based on the resonance zones seems

to work, but it may be useful to check if the resonance zones themselves can be identified using only

knowledge of the symbolic dynamics. A future goal of this work is to compute resonance zones in

high-dimensional systems using network properties of symbolic dynamics.
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