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Topological entropy measures the number of distinguishable orbits in a dynamical system, thereby quantifying
the complexity of chaotic dynamics. One approach to computing topological entropy in a two-dimensional
space is to analyze the collective motion of an ensemble of system trajectories taking into account how
trajectories “braid” around one another. In this spirit, we introduce the Ensemble-based Topological Entropy
Calculation, or E-tec, a method to derive a lower-bound on topological entropy of two-dimensional systems
by considering the evolution of a “rubber band” (piece-wise linear curve) wrapped around the data points
and evolving with their trajectories. The topological entropy is bounded below by the exponential growth
rate of this band. We use tools from computational geometry to track the evolution of the rubber band as
data points strike and deform it. Because we maintain information about the configuration of trajectories
with respect to one another, updating the band configuration is performed locally, which allows E-tec to be
more computationally efficient than some competing methods. In this work, we validate and illustrate many
features of E-tec on a chaotic lid-driven cavity flow. In particular, we demonstrate convergence of E-tec’s
approximation with respect to both the number of trajectories (ensemble size) and the duration of trajectories
in time.

From the stirring of dye in viscous fluids to the
availability of essential nutrients spreading over
the surface of a pond, nature is rife with ex-
amples of mixing in two-dimensional fluids. The
long-time exponential growth rate of a thin fila-
ment of dye stretched by the fluid is a well-known
proxy for the quality of mixing in two dimensions.
In the real-world study of mixing, this stretching
rate may be hard to compute; the velocity field
may not be known or may be expensive to recover
or approximate, thus limiting our knowledge of
the governing system and underlying mechanics
driving the mixing. One alternative is to use
time-ordered trajectory data, often obtained from
tracer particles such as ocean drifters. In this pa-
per, we use the collective motion of such trajec-
tories, along with tools from computational ge-
ometry, to develop a lower bound to the stretch-
ing rate. The lower bound is obtained by ap-
proximating the filament of dye with a piece-wise
linear, non-intersecting “rubber band” stretched
around the data points. We call our algorithm
the Ensemble-Based Topological Entropy Calcu-
lation, or E-tec.
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I. INTRODUCTION

A variety of techniques have been used to quantify
complexity in dynamical systems theory. These tools in-
clude the finite-time Lyapunov exponent field1,2, which
measures the time for nearby trajectories to separate;
operator-theoretic methods, such as the eigenfunctions
and eigenvalues of the Koopman operator3; and numer-
ical evolution of a material-curve4 to compute the topo-
logical entropy, which measures the proliferation of dis-
tinguishable orbits5. Such knowledge aids greatly in a
wide variety of natural and industrial fluid systems, in-
cluding the large-scale dispersion of pollutants in the
Earth’s atmosphere and oceans6 and the rapidly develop-
ing field of microfluidics7. However, a problem remains
for many techniques — the fine-scale structure of a sys-
tem may not appear without a high point density. A
sufficient number of system trajectories and/or the lin-
earizations about these trajectories may simply be too
expensive to compute or to measure experimentally. We
seek techniques that can accommodate such sparse data.

Our goal is to compute material-line stretching rates
using only 2D particle trajectories, like those collected
from oceanic floats8,9 or fluorescent beads in microfluidic
systems10,11. These data sets may be sparse, and hence
may not fully sample all of the 2D space. We are mo-
tivated by Budǐsić, Allshouse, and Thiffeault9,12,13, who
use braiding theory to compute a lower bound for topo-
logical entropy of such data sets. The initially embed-
ded material-curve is thought of as an elastic line whose
growth rate is computed using the collective motion of
all available trajectories moving through space in con-
cert. In essence, the relative motion of an ensemble of
trajectories in space encodes global information that is
not contained in any one individual trajectory. That is,
extra information is “hiding” in an ensemble of trajecto-
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ries, which is not exploited in a trajectory-by-trajectory
approach.

In this paper, we focus on these underlying stretching
and folding processes that drive mixing in two dimen-
sional fluids. We apply computational geometry tech-
niques to develop a 2D algorithm titled the Ensemble-
based Topological Entropy Calculation (E-tec). E-tec
achieves three main goals: a) estimation of a lower bound
to the topological entropy on data sets, b) convergence
to the topological entropy as ensemble size increases, c)
linear scaling in runtime with the length of trajectories
and N logN scaling with the number of trajectories N ,
as a worst-case scenario.

The remainder of this paper is broken up into four sec-
tions. We first review topological entropy (Sect. II) and
then summarize our E-tec algorithm (Sect. III). We eval-
uate the performance of E-tec on a chaotic, lid-driven
cavity flow as a test case (Sect. IV). Finally, we demon-
strate E-tec’s robustness and show evidence that the E-
tec runtime compares favorably to braiding algorithms
(Sect. V). Appendix A contains procedural details of the
algorithm.

II. TOPOLOGICAL ENTROPY

Topological entropy is a measure of the growth rate of
the number of distinguishable orbits14. More formally,
topological entropy is defined by considering equivalence
classes of trajectories of duration T that are only distin-
guished if they are, at any point in time, further than
some resolution ε > 0 apart. The number of these ε-
distinct classes of trajectories increases as both T → ∞
and ε → 0. Topological entropy measures the growth
of all ε-distinct trajectories as T → ∞. Specifically, the
topological entropy h is the exponential growth rate in
time of the number of distinct trajectory classes for ar-
bitrarily small ε.

In two-dimensional flows, topological entropy h can be
estimated by embedding an initial material-curve, e.g. a
line of dye, of length L0 in the system and estimating its
growth under the evolution of the flow15. At long times,
the length L(t) of the curve as a function of time t grows
exponentially as

L(t) ≈ L0 e
ht. (1)

Thus, direct computation of the curve’s evolution is trou-
blesome in chaotic flows since the length is expected
to grow exponentially fast, which requires an exponen-
tially growing number of trajectories to maintain suffi-
cient point density of the curve. Other techniques for
extracting topological entropy operate on a trajectory-
by-trajectory basis, i.e. ensemble-averaging some quan-
tity (such as the Jacobian singular values) computed one
trajectory at a time. This is the approach taken in re-
cent work on expansion entropy16 , a generalization of
topological entropy.

As an alternative approach, a lower bound to the topo-
logical entropy may be computed with a finite number
of trajectories and no detailed knowledge of the velocity
field. The material-curve to be advected is represented
by a taut elastic loop that wraps tightly around trajec-
tories that strike it. Since an advected material-curve
may be continuously deformed into this taut loop given
the same trajectory evolution, the need for maintaining
material-curve point density is eliminated. The loop is
stretched and folded over itself exponentially many times
in a chaotic flow. Its exponential growth rate is a lower
bound to the full system’s topological entropy9.

In this more topological setting, braiding theory has
been used to compute this lower bound. The Finite-
Time-Braiding-Entropy (FTBE) method12 evolves the
loop forward using the entanglement of a finite number of
trajectories. However, this method scales quadratically
in the number of points12, rendering braiding exponent
calculations unwieldy for systems requiring many points.

To develop a computationally efficient method to esti-
mate a lower bound on the topological entropy of a planar
flow, we compute the stretching rate of an advected elas-
tic curve directly. Referring now to the elastic curve or
loop as a rubber band, we use the same FTBE idea of tra-
jectories working in concert to stretch and fold the band.
The E-tec algorithm achieves this using the same input:
i) a set of (typically aperiodic) trajectories {xi(t), yi(t)}
that are discretized over time t1, t2, . . . and ii) a user-
specified, non-self-intersecting elastic band which wraps
around a set of trajectories. The output is the number of
edge segments in the band as a function of time. How-
ever, instead of using a braid representation to compute
the stretching of the band, E-tec computes this stretch-
ing, and thus the topological entropy, directly by using a
triangulation to detect all point-band collisions. The idea
of using an advected dynamic triangulation to compute
the growth rate of a band was first proposed by Marc
Lefranc in the context of periodic orbits17–19.

III. OVERVIEW OF E-TEC

We next provide an overview of the E-tec algorithm.
(Details are given in Appendix A.) E-tec computes how
an initial, closed, piecewise linear, non-self-intersecting
rubber band in R2 evolves under an ensemble of tra-
jectories. The vertices of the band coincide with tra-
jectories from the ensemble. When trajectories strike
the band, they do not penetrate it but stretch it like
a piece of elastic (Fig. 1a). In this manner, the band is
stretched and folded, typically producing a growing num-
ber of edges wrapping around each other. Our algorithm
tracks the configuration of the band. Care must also be
taken in tracking when a trajectory detaches from an
edge. This detachment results in two band edges return-
ing taut (Fig. 1b), in much the same way a tight string
will return taut once plucked (stretched) and released
(undoing the stretching). Each band edge is assigned
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FIG. 1: Band Deformation. a) The white point strikes and deforms the band (red). b) The white point detaches from the band. Notice
the band edge is taut after detachment. c) An initial rubber band stretched between two points on the left with edge weights displayed.
A more complicated band on the right. The edge weights correspond to the number of times the band crosses an edge.
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FIG. 2: Edge Weights. E-tec counts the number of edges of a
rubber band as it is stretched by moving points. As the two bottom
points rotate, the red band, initially wrapped around two points,
is stretched and folded (left to right). E-tec tracks the growth of
this band by assigning a weight to each edge corresponding to the
number of times the band passes over this edge.

an integer weight ω indicating the number of times the
band stretches across it (Fig. 1c and Fig. 2). For chaotic
advection, the total weight of the band will grow expo-
nentially, as shown in Sect. IV. This exponential growth
rate is a lower bound to the true topological entropy of
the dynamical system. Even though the weight of all the
edges grows exponentially, the number of unique edges is
bounded.

E-tec efficiently tracks band growth by simply shifting
edge weights to the appropriate edges when a point col-
lides with the band. A key component of the algorithm
is the detection of all relevant point-edge collisions. We
achieve this by maintaining a triangulation of all tra-
jectories for all times. These triangles are called core
triangles. Each edge of the stretched band lies within
the triangulation, so that each time a point strikes the
band, the orientation of one of the core triangles will be
inverted. We refer to this inversion as a triangle col-
lapse. All band deformations will be detected since band
edges remain in the core triangulation. The triangula-
tion must be updated upon any triangle collapse. This
update is local to the detection of each event, resulting
in the rearrangement of edges and triangles near the col-
lision only (illustrated in Fig. 3a). Similarly, the only
edge weights that are shifted are those involved in the
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FIG. 3: Events of E-tec Algorithm. a) As point 5 moves left,
triangle (2, 4, 5) collapses and inverts orientation. Two core trian-
gles are re-triangulated, with the new edge shown as dashed. The
initial edge weight of 2 for segment (2, 4) is shifted to segments (2,
5) and (4, 5). The blue-highlighted triangle (2, 4, 5) is the new
outer triangle of point 5. It records which triangle collapse would
be needed for the band to “snap back” taut, thereby undoing the
collision. b) As point 7 moves to the right, outer triangle (2,5,7)
collapses and the band edges (2, 7) and (5, 7) straighten into (2,
5). The three core triangles within pentagon (1,2,7,5,6) are recon-
figured into three new core triangles (1,2,6), (2,5,6), and (2,5,7).
Point 7 is still a candidate for future detachment, with new outer
triangle (3,4,7), which also happens to be a core triangle.

collision. The update process is independent of both the
number of points N and the number of triangles.

In addition to collisions, we need to detect when a tra-
jectory detaches itself from a band edge. E-tec records
which edges of the band are candidates for detachment
by storing the triangle made up of the outer-most band
edges attached to each point, i.e. the most recent edges to
have struck a point. These triangles are called outer tri-
angles. Some outer triangles are shown in blue in Fig. 3.
Unlike the core triangles, the outer triangles do not form
a triangulation of space. Rather, there is simply one
outer triangle for each vertex crossed by the band. An
outer triangle may coincide with a single core triangle,
or it may intersect multiple core triangles. When a point
detaches from the band, its corresponding outer triangle
collapses and inverts its orientation. Thus, E-tec must
track when both core and outer triangles collapse.
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Update	the	Event	List
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FIG. 4: E-tec Algorithm Flowchart. As described in Sec. III,
E-tec employs computational geometry techniques for tracking the
evolution of a piecewise-linear band. Full details are given in Ap-
pendix A.

In summary, there are two kinds of events that must be
detected: the collapse of either a core or outer triangle.
In the given time interval, these events are detected by
finding the time for which their area first goes through
zero. This time of first collapse is simply the appropriate
root of the area quadratic polynomial, which is formed
from the linear interpolation of triangle point positions.
Once these events are detected, they are put in a time-
sorted list and processed in order. Each event is “fixed”
by locally updating the core triangulation, outer trian-
gles, and edge weights. In the course of fixing an event,
we may need to add or remove events from the event list.
Event lists become large for densely-packed ensembles,
though E-tec parses through each event and performs
each subsequent triangulation update efficiently, as ver-
ified in the next section. A flowchart summarizing the
E-tec algorithm is given in Fig. 4.

Finally, a numerical example of E-tec applied to real
trajectory data is shown in Fig. 5.
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FIG. 5: Numerical Example of an E-tec Implementation.
a) Initial data points with the band wrapped around two points
(in red). The core Delaunay triangulation (in blue, dotted) is con-
strained to include the red band edge. b) Final data point positions
at T = 20, the triangulation, and the stretched band evolved un-
der the motion of the trajectories. Dynamics is given by model in
Sect. IV with τf = 0.96. c) E-tec output: the number of band
edges as a function of time (blue). The slope of the best-fit line
(red, dashed) is the topological entropy estimate. Please see online
supplemental material for the related movie.

IV. E-TEC ALGORITHM VERIFICATION

In this section, we verify the E-tec algorithm by
running E-tec on numerical trajectories sampled from
a chaotic lid-driven cavity flow used to study chaotic
advection20. We compare our results to lower bounds on
topological entropy computed from two different meth-
ods; first, by a direct application of Eq. (1) to a growing
material-line, and second, by a technique called homo-
topic lobe dynamics (HLD), which extracts symbolic dy-
namics from finite-length pieces of stable and unstable
manifolds attached to fixed points of the fluid flow21–23.

A. Chaotic Lid-Driven Cavity Flow

The chaotic lid-driven cavity model20,24–26 is a two-
dimensional area-preserving flow defined over a 2D verti-
cal cross-section of a rectangular cavity, extending verti-
cally from −b ≤ y ≤ b and horizontally from 0 ≤ x ≤ a.
The flow,

V(x, y, t) =

(
∂ψ

∂y
,−∂ψ

∂x

)
(2)
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FIG. 6: Dynamics of Chaotic Lid-Driven Cavity Flow. We
depict streamlines of the flow, Eq. (3). a) Motion under the first
half-period, nτf ≤ t < (n + 1/2)τf . b) Motion under the second
half-period, (n + 1/2)τf ≤ t < (n + 1)τf . c) Illustration of a
period-three orbit ri. Each color (blue, green orange) represents
the trajectory evolving forward one period.

is defined in terms of a stream function ψ(x, y). The
stream function is an exact solution of the biharmonic
equation ∇2∇2ψ(x, y) = 0 defined on the rectangular
domain. The stream function is time-periodic with pe-
riod τf and is given explicitly by

ψ(x, y, t) =


U1C1f1(y) sin

(
πx
a

)
+ U2C2f2(y) sin

(
2πx
a

)
,

for nτf ≤ t < (n+ 1/2)τf ,

−U1C1f1(y) sin
(
πx
a

)
+ U2C2f2(y) sin

(
2πx
a

)
,

for (n+ 1/2)τf ≤ t < (n+ 1)τf ,

(3)
where

fk(y) =
2πy

a
cosh

(
kπb

a

)
sinh

(
kπy

a

)
− 2kπb

a
sinh

(
kπb

a

)
cosh

(
kπy

a

)
, k = 1, 2,

and

Ck =
a2

2kπ2b

[
a

2kπb
sinh

(
2kπb

a

)
+ 1

]−1
, k = 1, 2.

We follow Grover et al.20 and assign U1 = 9.92786, U2 =
8.34932, a = 6, and b = 1. Fig. 6a and Fig. 6b show

streamlines for the two steady flows in Eq. (3). Each flow
is separately integrable and is asymmetric in x, with a
large vortex on one side and a smaller vortex on the other.
The system alternates between each flow for a half-period
τf/2. It is this alternating flow that introduces positive
topological entropy into the system.

When τf is sufficiently large, τf ≥ τ∗f ≈ 0.9553, there
exists a period-three orbit, ri, i = 1, 2, 3, such that

M(r1) = r2, M(r2) = r3, M(r3) = r1, (4)

where M is defined to be the flow map that evolves a
point (x, y) forward to the point (x′, y′) = M(x, y) af-
ter a single period τf . Fig. 6c shows the points ri and
their time evolution over one period. In the first half-
period, nτf ≤ t < (n + 1/2)τf , the two trajectories on
the left swap positions in a clockwise fashion, while in the
second half-period, (n+ 1/2)τf ≤ t < (n+ 1)τf , the two
trajectories on the right swap positions in a counterclock-
wise fashion. Grover et al20 characterize the ri as a set of
three strands braiding around one another in a nontrivial
fashion. The presence of this braid guarantees the topo-
logical entropy is at least hpo3 = 0.9624, the topological
entropy which Boyland et al.27–29 computed using the
Bestvina-Handel train-track algorithm30. We note that
this period-three orbit lives within a larger coherent set,
a period-three island chain24 when τf is strictly greater
than τ∗f .

B. Period-Three Orbit and Convergence in Ensemble Size

Here we investigate the convergence of the E-tec algo-
rithm by studying trajectories from the chaotic lid-driven
flow with period τf = 0.96, where we are guaranteed the
existence of a period-three island chain20,31,32. As illus-
trated in Fig. 7d, no trajectory starting in an island leaves
the island, and no trajectories enter. These islands braid
around one another as they swap places in the same fash-
ion depicted in Fig. 6c. In the analysis of Sect. IV A, each
trajectory is sampled with time step ∆t = 10−2 between
points; this will be shown to be sufficient in Sect. V C.

First, we run E-tec on a set of three trajectories with
the initial condition for each trajectory chosen in a dif-
ferent period-three island (Fig. 7a). We place an initial
band around the right two points and observe exponen-
tially growing band weights (Fig. 7b). At T = 15 our
estimate for the topological entropy is within 0.1% of the
topological entropy guaranteed by the braid (Fig. 7c).

Next, we run E-tec on a set of 75 trajectories consist-
ing of the 3 previously selected trajectories along with 72
randomly chosen ones. We calculate topological entropy
by considering the time evolution of the same initial band
(Fig. 7b). While the dynamics appear far more compli-
cated than in Fig. 7a, our estimate of topological entropy
is within fitting error to hpo3 = 0.9624 (Fig. 7c). Our
results demonstrate that the periodic islands, and their
braiding, are what drives most of the system entropy33,34.
Furthermore, this demonstrates that for certain systems,
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75	pt entropy	=	0.9631	+\- 0.0011
3	pt entropy	=	0.9615	+\- 0.0020

FIG. 7: E-tec Analysis of the Chaotic Lid-Driven Cavity Flow. We show E-tec results on trajectories governed by Eq. (3) with
τf = 0.96, guaranteeing the existence of a period-three orbit, seen in Fig 6c. a) We show E-tec results when considering only 3 points close
to the period-three orbit and contained in period-three islands. We consider an initial band around the two right points (top). This band
evolves (bottom) into a highly stretched band (edge weights in red) around all three points by T = 15. b) We consider the same 3 initial
points, but add 72 random trajectories (top). The dynamics are more complex (bottom, weights omitted). c) The growth rate in the
number of edges, i.e. our estimate of the topological entropy, for (a, red) and (b, blue) is the same. This indicates the entropy is driven
by the period-three islands as also shown by Ref. 21. d) The coherent period-three islands, noted in Refs. 21, 20, and 24, are clearly seen
in the Poincaré return map of a long-lived trajectory.
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FIG. 8: Convergence of E-Tec in the Length and Number
of Trajectories. a) We demonstrate convergence of E-tec to
hpo3 = 0.9624 with increasing sample size and trajectory duration.
The same initial band is stretched under ensembles of increasing
size. All trajectories are sampled from outside the islands in the
chaotic lid-driven flow with period-driving parameter τf = 0.96.
The entropy reported at time T is the fitting slope and 95 percent
confidence interval to the log of the total number of edge weights
over time t for the range t ∈ [5, T ]. b) E-tec output using the 100
point ensemble with a single trajectory added into one, two, and
three of the periodic islands.

topological approaches such as E-tec (as well as braiding
approaches) are capable of producing accurate estimates
of topological entropy with only a small set of carefully
chosen trajectories.

Although the coherent sets for our example were
straightforward to locate, for other examples and practi-
cal applications, coherent sets may be harder to identify.
As such, there is no guarantee trajectories from coherent
sets, whose dynamics might be governing the topologi-
cal entropy of the system, will be sampled appropriately.
To investigate how E-tec would perform under conditions
like this, we examine our ability to accurately recover the
topological entropy when randomly sampling initial con-
ditions uniformly in space, but removing any point cho-
sen in the period-three islands. E-tec was run on increas-
ingly larger but nested sets of such trajectories. That is,
the points chosen in the 20 trajectory analysis contain all
of the points in the 10 trajectory analysis, and so forth.
As shown in Fig. 8a, E-tec converges rather quickly in the
number of points to the topological entropy lower bound
guaranteed by the period-three islands. Convergence re-
sults with respect to the length of trajectories may be
problematic for many practical applications where long-
lived trajectories are not guaranteed. Like any result
from a fit in time, estimates may fluctuate based on the
interval where fitting is performed.

Finally, in Fig. 8b, we investigate the E-tec conver-
gence using the 100 point ensemble in Fig. 8a by adding
additional points in each of the three islands. E-tec per-
forms increasingly better as the island points are added.
The result with no island points, given in Fig. 8a, is then
taken as a worst-case scenario. This assures our confi-
dence in E-tec results as ensemble sizes are increased in
Sect. IV C.

C. Topological Entropy for Range of Period Driving
Parameter τf

With confidence in E-tec’s ability to characterize topo-
logical entropy when τf = 0.96, we next explore how the
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FIG. 9: Verification of E-tec for Increasing τf . E-tec topo-
logical entropy results over a range of τf values using increasing
ensemble sizes. We compare to the estimate of topological entropy
from directly stretching a material line21 and through another topo-
logical technique, homotopic lobe dynamics22,23.

topological entropy changes as τf varies. As mentioned
previously, the period-three orbit is born at τ∗f ≈ 0.9553
and persists for larger values. Thus, entropy for values
τf < τ∗f will be bounded above by the braiding entropy
of hpo3 = 0.9624, while hpo3 remains a lower bound for
τf > τ∗f . In all cases, the same initial band is chosen and
evolved forward.

As shown in Fig. 9, our estimate of topological en-
tropy using E-tec is within error of the direct calculation
of material-line stretching when 0.85 ≤ τf ≤ 0.98 and the
number of data points is at least 1000. For τf < τ∗f , there
are no known island chains that drive the complexity. De-
spite this, E-tec performs well here, as shown in Fig. 9.
For low values of τf , when τf < 0.85, E-tec produces an
estimate slightly less than that of direct stretching but
consistent with the value produced by HLD. But E-tec’s
discrepancy becomes smaller with increasing numbers of
samples. For high values of τf , when τf > 0.98, both
E-tec and HLD produce lower estimates for topological
entropy than the calculated direct stretching value. We
note that E-tec with 1000 trajectories still produces esti-
mates consistent with HLD, and with 10,000 trajectories
E-tec exceeds the HLD estimate but is still below the
direct material-line stretching.

To more clearly see what drives the increase in en-
tropy for high values of τf , we show the band stretched
by E-tec for three different values of τf each computed
from a set of 1000 independently chosen trajectories (see
Fig. 10). Exponential stretching and folding is present
in all tested parameter values, though Fig. 10 shows the
band is stretched in a more complex fashion at higher τf
values. Here, additional island chains emerge24 resulting
in secondary folding35 that seems less “smooth.” This
secondary folding results in kinks near the islands that
propagate forward, which in turn are further stretched
under the dynamics. These small areas with kinks give
significant contribution to the topological entropy, but
because the entropy estimates (Fig. 9) were generated
from uniformly random samples, these highly-kinked re-
gions may remain undersampled. As such, a good por-

a)

b)

c)

FIG. 10: Stretched Band Visualization. E-tec band stretching
due to flow advection for period-driving parameters a) τf = 0.80,
b) τf = 0.96, and c) τf = 1.05. All bands are stretched by
ensembles of 1000 uniformly distributed trajectories.

tion of the stretching may remain undetected by E-tec in
Fig. 10c.

V. E-TEC ROBUSTNESS

In this section, we investigate the robustness of E-tec’s
results. More specifically, we examine how E-tec’s ability
to correctly estimate topological entropy is impacted by
the choice of initial band and the time-step associated
with trajectories. Finally, we discuss how the E-tec algo-
rithm’s run-time scales with the duration and number of
sampled trajectories.

A. Robustness to Choice of Initial Band

We make the following conjecture: if all trajectories
reside in the same ergodic component then the choice
of initial band does not affect the topological entropy
computed by E-tec as long as the trajectories are suffi-
ciently long. Figure 11 supports this conjecture. All ini-
tial bands eventually become stretched at the same rate
despite some differences at early times. Adjacent points
may remain close for some time, though the chaotic na-
ture of the flow causes nearby trajectories to eventu-
ally diverge, thereby making the band’s deformation in-
evitable. Thus, as long as it is possible to obtain suffi-
ciently long trajectories within a single ergodic compo-
nent, E-tec’s topological entropy calculation appears to
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FIG. 11: Initial Bands. E-tec output is the logarithm of the sum
of edge weights as a function of time. E-tec’s estimate of topological
entropy is the best-fit linear slope through this data. Here we show
10 different outputs from E-tec for the same set of 100 trajectories.
In each case, we chose a different pair of points around which to
stretch our band. Despite some initial differences in the increase
in edge weights due to initial adjacent points staying close to one
another (left inset), eventually all the bands grow at similar rates
(right inset). When we fit the exponential growth rate, starting at
T = 5, we find the values for each of the 10 bands agree within 5
decimal places and average out to 0.9617.

be invariant to the choice of initial band.
Some chaotic flows have more than one ergodic com-

ponent, or a mixture of ergodic and non-ergodic regions.
This is true of the model flow in Fig. ??d. In such sys-
tems, the choice of initial band will impact the topologi-
cal entropy estimate. For example, a band placed entirely
in one of the test flow’s period-three islands (Fig. 7d) will
undergo no significant stretching under the flow and thus
yield zero topological entropy.

In practice, to make sure all ergodic components are
sampled, it is prudent to check that the final band
stretches around nearly all of the data points. Alter-
natively, one could sample many initial bands taking the
maximum growth rate of all sampled bands as the best
estimate of the entropy36. E-tec is fast enough to run
multiple bands in ensembles of fewer than 106 trajecto-
ries in a reasonable time37.

B. Algorithm Scaling and FTBE Comparison

The computational runtime of E-tec is linearly propor-
tional to the duration of the trajectories. This is because
number of edges tracked by E-tec is constant, and it is
only the values of the weights that grow exponentially
in time. This scaling is the same as the FTBE calcu-
lation (which may be calculated using the freely avail-
able Matlab package braidlab38) and stands in contrast
to algorithms that precisely evolve a material-curve for-
ward, which requires inserting exponentially more points
to maintain sufficient point density39.

One advancement we have made over the FTBE cal-
culation is the run-time scaling with respect to the num-
ber of trajectories used (see Fig. 12). The FTBE cal-
culation scales quadratically in the number of trajecto-
ries N due to the braid approach requiring N2 algebraic
generators per unit time step12. E-tec scales asymptot-
ically as O(N logN) due to creating and maintaining a
time-sorted list of collapse events, the length of which
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FIG. 12: E-tec Runtimes. Runtime comparison of braidlab, a
freely available Matlab package implementing the FTBE calcula-
tion, and E-tec. Both used the same trajectories from the chaotic
model flow for τf = 0.96. All computations were completed using
a 2.8 GHz Intel Core i7 processor.

scales linearly with the number of points. As a practical
matter, the E-tec runtime for small to moderate ensem-
bles (roughly up to 5,000 trajectories) is dominated by
the linear behavior (Fig. 12). One illustrative example
highlighting the runtime difference between the two al-
gorithms is rigid rotational flow. While an admittedly
special case, there would be no new collapse events (ex-
cept for ones associated with the boundary) making E-tec
very fast, whereas the number of braid generators needed
would be proportional to N2.

One advantage the braid approach has over E-tec is
that once the braid is extracted from the trajectory data,
it may be applied to any initial band. E-tec only prop-
agates a single curve forward. However, for topological
entropy calculations, a single sufficiently long curve is
typically sufficient (as evidenced in Fig. 11).

C. Robustness to Step Size ∆t

Because E-tec is based on the computational analysis
of evolving trajectories, it is necessary to consider dis-
cretized time. We next investigate how the trajectory
time step ∆t affects the entropy calculation and show
that E-tec returns trustworthy results even when poorly
resolved trajectories are used as input. We use two en-
sembles of trajectories (of sizes 100 and 1000) sampled
at a fine scale using the same reference time step of
∆t∗ = 10−4 to generate two reference topological en-
tropies h∗t . We then vary the time step ∆t (keeping the
trajectories the same) and compute both ensembles’ cor-
responding ht. The effect of time step ∆t is quantified
by computing the relative error∣∣∣∣1− ht

h∗t

∣∣∣∣, (5)

which is plotted in Fig. 13. The data shows the relative
error grows linearly with the time step ∆t. As the tra-
jectory information is input into E-tec using larger step
sizes, we detect more events between steps. E-tec detects
events individually for all values of ∆t, but the order in
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FIG. 13: Relative Error as a Function of Step Size. The effect
of time step ∆t on the relative error in the topological entropy
calculation with respect to the reference time step ∆t∗ = 10−4.
Graph displays calculations done on two separate ensembles of size
1000 and 100.

which these events are detected is potentially different as
∆t increases, due to the differences in the interpolation
of trajectories. In fact, undersampled trajectory data
may lead to entirely different events. This explains the
larger relative errors for the 1000 trajectory ensemble;
at higher point densities, there are simply more events
that E-tec must resolve, resulting in more erroneous and
misordered event detections. Despite this, Fig. 13 shows
that the E-tec error due to step size is still relatively
small. It is comparable to (or smaller than) the error
due to other sources, such as trajectory length and en-
semble size (Fig. 8a), for ∆t < 10−2, at least for smaller
ensemble sizes.

VI. CONCLUSION

We introduced the Ensemble-based Topological En-
tropy Calculation (E-tec), an algorithm that computes
topological entropy in a planar flow from an ensemble
of system trajectories. We verified E-tec’s convergence
to the correct topological entropy with increasing num-
bers of trajectories on a highly chaotic, lid-driven cavity
flow. E-tec’s performance was shown to be robust with
respect to the choice of initial band, as well as changes
in the time sampling interval (∆t). Notably, we have
shown that E-tec’s runtime scales as O(N logN), where
N is the number of trajectories in the ensemble.

Our work suggests several further directions for the
analysis of trajectories with E-tec, which we intend to
explore in future studies. First, we shall seek to extend
E-tec to three dimensions and higher. Braiding theory,
the basis for FTBE calculations, cannot be readily gener-
alized to higher dimensions40. The computational geom-
etry framework in which E-tec is based might perhaps be
more naturally extended17–19. Instead of a rubber band
in a planar flow, we would consider a two-dimensional
rubber sheet stretched around a collection of points in a
three-dimensional flow. A 3D triangulation may still be
used to track point-face or edge-edge collisions, and the
rubber sheet may be chosen as one of the faces in the

initial triangulation. As the points evolve in time, they
carry the sheet along with them, stretching and folding
it so that its growth reflects the flow complexity. Though
there clearly remain some significant challenges to exe-
cuting this generalization to three dimensions, we antic-
ipate a host of interesting theoretical opportunities that
this route may provide.

Second, by tracking all the trajectories in concert, we
believe E-tec’s algorithm may be naturally adapted to-
wards identifying and tracking coherent sets and other
emergent structures. Finally, some special challenges
arise when working with trajectories derived from exper-
imental observations. These include noise in the position
data and trajectories that are only observed for part of
the full time interval. We hope to adapt E-tec to some
of the challenges facing trajectories derived from experi-
ments.
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Appendix A: The E-tec Algorithm Outline

This Appendix outlines our implementation of the E-
tec algorithm.
Input: The following inputs are required by the algo-
rithm:

1. The precomputed (or experimentally measured)
trajectories.

2. An initial, non-self-intersecting rubber band
stretched around a sequence of data points, spec-
ified by the set of edges connecting pairs of data
points. This is represented as a counterclockwise
ordering of this set of points. It is often convenient
to choose an initial band that encloses two distant
points.

Output: E-tec tracks the evolution of the band, as we
will describe below, and outputs:

1. The state of the stretched rubber band as a func-
tion of time, recorded as a (core) triangulation of
all data points and a set of edge weights of this
triangulation.

2. The sum of all band edge weights ω as a function
of time.

3. The exponential growth rate of the band (topolog-
ical entropy), determined by the slope of the best
fit line for the ln(ω) vs. time graph.

Data structures: E-tec maintains the following data
structures as a function of time:

1. A core triangulation of all data points in the plane.
2. The weights on each edge in the triangulation.

(Non-zero weighted edges constitute the stretched
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rubber band.)
3. For each relevant data point, the outer band tri-

angle (abbreviated outer triangle) records the out-
ermost wrapping of the rubber band around that
point. (See the blue shaded triangles in Fig. 3.)
During the algorithm’s run, the outer triangle rep-
resents the piece of rubber band that has struck the
point most recently and hence is a candidate for de-
tachment at a future time. For example, upon in-
spection of vertex 7 in Fig. 3b, we may deduce that
of all the red band edges attached to it, the two that
created the largest angle would be the ones to snap
back and revert to a single edge. Specifically, edge
(2, 5) will snap back taut if triangle (2, 5, 7) changes
orientation. Notice that outer triangles are not nec-
essarily contained in the set of all core triangles.

Steps: We outline the key steps taken by E-tec in track-
ing the evolution of a rubber band. These steps are sum-
marized in the Fig. 4 flowchart.

1. We first initialize the core triangulation using a
constrained Delaunay triangulation41 of the initial
points (with the initial placement of the rubber
band as the constraint). See Fig. 5a.

In steps (2-6) we evolve the state of the system (core
triangulation, weights, and outer triangles) forward us-
ing the next time-slice in the trajectory data as input.
Notice that E-tec does not need the whole trajectory at
once in order to evolve the triangulation forward, and
therefore could be used in real-time during experimental
data collection.

2. For each core and outer triangle in the current state
of the system, we use the linear interpolation of
point positions to determine if and when a triangle
will pass through zero area during this time step.
These collapse events are sorted by time into an
event list.

3. If the event list is non-empty, we go to step 4
and determine the event type of the next collapse
event. If the event list is empty, we then add up
the weights of every edge to get the current total
weight ω of the band, and store this value. This
acts as a proxy for the length of the band, and
grows with the same exponential rate in time. If
we are at the final time of the trajectory data, we
end by analyzing the accumulated weight data in
step 7. Otherwise, we move on to the next trajec-
tory time in step 2.

4. A collapse event can be one of three general types:
a core triangle collapse (Fig. 3a), an outer triangle
collapse (Fig. 3b), or a combined core and outer
triangle collapse (see Fig. 14 for an illustration).
While the specifics of how the three types of col-
lapse events are handled are different, the broad
strokes, as seen in step 5, are the same.

5. For each collapse event type, there is a general tem-
plate for adding, removing, and/or modifying the
core and outer triangles that are adjacent to the
collapsing triangle. Crucially, this process is local,
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5

FIG. 14: Combined Core and Outer Triangle Event. In
blue is a combined core and outer triangle (2,4,5). As point 5
moves to the right and this triangle collapses, the band returns
taut around segment (2,4). Three core triangle (1,2,4), (2,3,5),
and (3,4,5) are reconfigured, with the new edge shown as dashed.
Collapsed triangle (2,4,5) (previously shaded) remains as a core
triangle.

and the number of operations is bounded and does
not grow with the number of trajectories.

6. The local deletions, creations, and modifications
of core and outer triangles that result from han-
dling a collapse event potentially affect the overall
event list for this time-step. First we consider the
deleted and modified core and outer triangles. If,
before modification, they have a time-to-zero-area
that is in the remaining fraction of the current time-
step, then we search for and remove them from the
event list. Next we consider the new and modi-
fied core and outer triangles. If, after modification,
they will collapse in the remaining time-step, we
search for the proper position to insert them into
the sorted event list. Both searches are binary, and
constitute one of the two aspects of the algorithm
that give us O(N logN) computational complex-
ity (O(logN) for binary search and O(N) searches
per time-step). After modifying the event list, we
return to step 3.

7. Approximate the topological entropy by computing
the exponential growth rate for the total weight
over time.
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